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Abstract 

 

The forecasting methods used in this study are Autoregressive Integrated Moving Average (ARIMA) and 

Multiscale Autoregressive (MAR). The ARIMA model does not include predictor variables in the model. 

The MAR model is a model that performs the transformation process using wavelets. The MAR model 

adopts an autoregressive time series (AR) model with wavelet coefficients and scale coefficients as 

predictors. The wavelet coefficient and scale are obtained by decomposition using Maximal Overlap 

Discrete Wavelet Transformation (MODWT). MODWT functions to describe data based on the level of 

each wavelet filter. This study aims to determine the best forecasting model using ARIMA and MAR models. 

The time series data used in this study is data on the rupiah exchange rate against the US dollar. Data on 

the rupiah exchange rate against the US Dollar for 2019-2020 is non-stationary data, so the ARIMA and 

MAR models can be used in this study. 
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1. INTRODUCTION 

Each country has its currency used as an exchange tool in trading activities. The 

exchange rate of rupiah against foreign currencies has a positive or negative effect on the 

economy Increasing or decreasing the rupiah exchange rate against the US dollar will 

affect the cost of industrial production be it imports or exports. Prediction or forecasting 

is an effort to predict what will happen in the future based on past data. Time series data 

is a set of data obtained from the observation of a phenomenon that occurs based on a 

time index with a fixed or equal time interval. In the analysis of time series, the 

assumption that must be fulfilled from the time series data is that the data is stationary. 

Research on the analysis of non-stationary time series is the transformation of 

wavelets by forming a Multiscale Autoregressive (MAR) model. Wavelet transformations 

are divided into two large sections, continuous wavelet transform (CWT) and Discrete 

Wavelet Transform (DWT). In DWT it is assumed that the sample size N can be divided 

into 2J for a positive integer J. A new concept was developed in addressing the limitations 

of DWT in that sample size, known as Maximal Overlap Discrete Wavelet Transform 

(MODWT). MODWT has advantages over DWT among others, it can be used for any 

sample size N. 

Based on the description stipulated, the study examined the role of wavelet models 

in which mar models are contained, to predict un stationary time series data. Therefore, 

the data will be processed in two ways, namely detrending (trend separation) and 

differencing which are further decomposed with MODWT method so that mar modeling 

can be done. The selected MAR model is a model that meets the assumptions of normality 
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and white-noise. By establishing a wavelet forecasting model, forecasting over the next 

few periods can be applied to rupiah exchange rate data 

 

2. METODH 

2.1. Wavelet Transformation.  

Wavelet transformation is one of the methods that can be performed on stationary 

and non-stationary time series data. This method can automatically separate a trend from 

a un stationary time series data. Besides, wavelet transformations can model irregular or 

un linear patterned data. In this method, if the data is a non-stationary time series then it 

can be decomposed immediately without being stationed first. But based on, the data of 

the stationed time series provides better results than unstationed time series data. Most 

non-stationary time series data is marked by a trend. Trends in the time series are two 

types, namely stochastic trends and deterministic trends. There are two methods for 

indexing time series data, including differencing and detrending. Stochastic trends are 

usually addressed by differentiation processes. While deterministic trends are usually 

overcome by doing trend separation  

According to [10], e.g. a non-stationary time series 1 2 3 1t t tZ t Z e   −= + + + . If 

1 0  , 2 0 = , 3 1 =  then obtained a model 1 1t t tZ e  −= + +  written as 

1 1
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t t t
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Then tZ
 
will show a positive trend 1( 0)   or negative trend 1( 0)  , which is 

called a stockastic trend. 

On the differencing method, 1t t tZ Z Z − = −
 
formed as the first reference. The d-

reference for time series stationation when denoted by 𝑊𝑡 , i.e. 𝑊𝑡 = ∇𝑑𝑍𝑡, with d is an 

integer 𝑑 ≥ 1. A non-stationary time series is considered a deterministic trend when the 

mean function  ( )t  can be explained by the polynomial of the k-order. 
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The instasioneran achieved by the construction of a new time series in residuals is 

known as the detrending method. If the data of a stationary time series is detrending 

symbolized by tY  then t t tY Z = −  where is the initial data of a time series and μt is a 

trend model in the form of polynomial.  Stationary time series data is decomposed with 

MODWT method to obtain wavelet coefficients and scale coefficients, so that Multiscale 

Autoregressive (MAR) modeling can be performed. For forecasting purposes, the model 

is restored to its original form called the wavelet forecasting model. For example, a time 

series data isstationed by detrending and trend that has been obtained /separated (𝜇𝑡) in 

the form of 𝛼1 + 𝛼2 then after obtaining the MAR model from 𝑌𝑡, it is then returned to 

the original form 11 1 2 ttZ t Y  ++ = + +  where  1tY +  contains wavelet coefficients or scale 
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coefficients. Multiscale Autoregressive (MAR) model found in wavelet forecasting 

models, the process follows AR through the convergence of optimal procedures and 

asymptomatically will be equivalent to the best forecasting. 

 

2.2.1  MAR 

MAR model is a model by performing a transformation process using a wavelet, 

which assumes each scale of a wavelet transformation follows an AR process. 

Determination of lag-lag that becomes an input variable for the MAR model uses wavelet 

coefficients and scale coefficients derived from wavelet transformation results. The 

wavelet coefficient (detail) and scale coefficient of wavelet transformation results through 

MODWT decomposition are considered to have an influence on predictions at the time 

𝑡 + 1 will be shaped 
, 2 ( 1)Jj t k

w
− −

 and 
, 2 ( 1)JJ t k

v
− −

, or can be written as: 

1 , 1,, 2 ( 1) , 2 ( 1)
1 1 1

ˆ ˆ ˆ
j j

j J

A AJ

t j k J k tj t k J t k
j k k

X a w a v + +− − − −
= = =

= + +   (3) 

with MODWT decomposition level ( 1,2, ,j J= ), 
jA  is the order of the MAR model                                           

( 1,2, , jk A= ), 
, 1,

ˆ,j k J ka a +
 is the coefficient value of the MAR model, t is the time of the, 

, 2 ( 1)jj t k
w

− −
  is a wavelet coefficient and 

, 2 ( 1)JJ t k
v

− −
 is a coefficient of scale. 

The determination of mar model input in the forecasting of the ( 1)t +  data is shown 

in Figure 1, the first input on each scale is the t-data, and the second input on each scale 

is the ( 2 )jt −  data.  

 
Figure 1. MAR Wavelet Modeling Illustration 

 

Figure 1 is an illustration to predict the 21st data (t+1st data) with the MAR model 

of order 2 (A_j=2) and level j=4, then the input variables used are the level 1 wavelet 

coefficient at t=20 and t=18, the level 2 wavelet coefficient at t=20 and t=16, the level 3 

wavelet coefficient at t=20 and t=12 , wavelet coefficient level 4 at t=20 and t=4, as well 

as scale coefficients at t=20 and t=4. 

Supposing J=6 and A_j=2 MAR models based on equations (3) can be expressed as: 
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1,1 1, 1,2 1, 2 2,1 2, 2,2 2, 4 3,1 3,
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 (4) 

 

or can be written as 
1 1s = A , 

 

The guessing of vector parameters can be solved by the smallest squared method that 

minimizes squared error, i.e.: 

 

        1ˆ ( ) s − = A A A  
 

Calculation of the alleged value of the MAR model, used α value that has been allegedly 

using equations. The α value and the wavelet coefficient value and scale obtained through 

decomposition are incorporated into the MAR model as in the equation.  

 

2.1.2 MODWT 

The wavelet transformation seen as more suitable for time series data is MODWT 

because in each decomposition level there is a wavelet coefficient and a scale of as much 

data length [3]. The determination of the level (J) for MODWT decomposition depends 

on the width of the decomposition filter (L) and the amount of data ( n), with the formula: 

ln 1
1

n
J

L

 
 + 

− 
  

The pyramid algorithm for MODWT is a calculation algorithm to calculate the scale 

coefficient and wavelet coefficient of MODWT at the j-level. If a data is decompoed with 

a wavelet filter and a scale filter, it will produce a wavelet coefficient and a scale 

coefficient. Figure 2 follows a pyramid algorithm for MODWT. 

 

2.1.3 The Stepwise Method in Determining the MAR Model Variables 

Stepwise is one of the methods that can be used for the process of selecting the best 

model, so it is useful to obtain significant and appropriate variables to be used in the MAR 

model. This method is a combination of the forward selection method and the elimination 

method which are applied alternately. Every time a new variable is entered into the model, 

all the variables previously entered are re-checked whether they still need to be 

maintained or excluded, then a selection is made. But if there are no more variables that 

can be included or removed from the model, the stepwise procedure ends (Sembiring, 

1995). 

The use of the stepwise MAR model method provides optimal conditions for the 

lag wavelet coefficients and scaling coefficients which should be used for forecasting a 

time series data. 

 

2.1.4 Examination of the Residual Assumptions of the MAR Model 

The MAR model that has been obtained is then examined for its residual 

assumptions. Mathematically, the residual is defined as: 

         ˆ
t t tZ Z = −                         (5) 
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where:  

𝜀𝑡: residual at time t (t = 1, 2, ..., n) 

𝑍𝑡  : observed value t 

𝑍̂𝑡: guessed value t 

There are two kinds of residual assumption checks, namely normality testing and 

white noise checking. 

 

2.2. Data analysis method 

The time series data used in this study are daily data on the Rupiah exchange rate 

against the US Dollar from January 2019 to February 2020, totaling 437 observations. it 

is non-staionarity time series data. The type of wavelet used is the Haar wavelet. The 

steps taken in this research are: 

a) Determine the data to be analyzed, in the form of rupiah exchange rate data  

b) Checking data  

c) Determine the level according to the filter used, namely Haar with filter 2 

d) Performed MODWT decomposition at each level 

e) Selected the variables to be input model the MAR based on the significant PACF lag 

f) Performed the stepwise method to obtain significant variables 

g) Performed MAR modeling on wavelet coefficients and significant scales 

h) Formed the MAR model 

i) Checking the goodness of fit by selecting the MAR model that has the smallest RMSE. 

 

3. RESULT AND DISCUSSIONS 

In this study, the MAR model was applied to the daily data of rupiah exchange rate 

against US Dollar which is herely called Exchange Rate from January 01, 2019 – August 

1, 2020, consisting of 437 observations.. The description of Exchange Rate data is used 

to find out an overview of the data, namely how big the average value, data spread, 

maximum and minimum values, and the amount of Exchange Rate data used in this study. 

 
Table 1. Statistik Deskriptif 

Variabe l N Average st. Deviation Minimum Maximum 

Kurs 437 14312 518.8394 13572 16575 

 

Based on Table 1. it can be seen that the amount of Exchange Rate data used for 

modeling is 437 observations. The average exchange rate is 14312.  For the spread of 

exchange rate data is 518.8394. The minimum exchange rate is 13572. While the 

maximum exchange rate is 16575. 

 

The first step is to test the stationaryity of the data. Stationary testing using dickey-

fuller augmented unit root test (ADF) can be seen in Table 2. Following: 

 
Table 2. ADF Exchange Rate Data Test 

Data 
Value p before 

differencing 

Value p after 

differencing 
Conclusion 

Kurs 0,1611 0,01 Stationary after differencing to 1 
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Based on Table 2. it is known that after differencing 1 time obtained a value of p = 

0.01. This means that the average awareness is achieved after diffrencing 1 time. The plot 

of exchange rate data after differencing 1 can be seen in Figure 1. Following: 

 
Figure 1. Plot Data Exchange Rate Differencing 1  

(left) and Plot Analysis Box-Cox (right) 

 

The Box-Cox transformation shows that the Exchange Rate data returns a value of 

λ=1. It can be said that the differencing exchange rate data 1 has been stationary against 

the variety. Thus the results of stationary examination show that the Exchange Rate at 

differencing 1 has been stationary against average and variety.  Average stationary testing 

is performed by looking at critical values at α=5% compared to the statistical value of t 

in the Augmented Dickey-Fuller (ADF Test) test. A one-time differentiation that 

produces a critical value is 5% less than the ADF test statistical value, so it is concluded 

that the data is stationary to the average. 

 
Table 3.  RMSE 

Data Model RMSE 

Kurs  ARIMA (0,1,1) 76.89935 

 

76.89935 → RMSE 

 
Figure 2. residual 
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Because there are some lags from the ACF plot of the ARIMA residuals that come 

out of the blue line, the residuals from ARIMA do not fulfill the nature of white noise. 

 

MAR Model Determination 

Significant lag-lag retrieval is significantly limited to 0.2 

 
Table 4. MAR model inputs based on significant PACF lag-lag  

in wavelet coefficients and scaling coefficients. 

Coefficient Significant lag n Input 

W1 Lag 1, 3 2 

W2 Lag 1, 2, 3, 4, 6 5 

W3 Lag 1, 2, 3, 4, 5, 7, 9, 10 8 

W4 Lag 1, 3, 5, 6, 9, 10 6 

W5 Lag 1, 2, 3, 5, 10 5 

W6 Lag 1, 3, 5 3 

V1 Lag 1, 2, 3 3 

V2 Lag 1, 3, 5, 10 4 

V3 Lag 1, 3, 9, 10 4 

V4 Lag 1, 2, 3, 5 4 

V5 Lag 1, 3, 5 3 

V6 Lag 1, 3 2 

 

Form mar models on significant wavelet and scaling coefficients. Next, choose the 

forecasting model with the smallest RMSE, which is presented in Table 4. RMSE Model 

ARIMA and MAR Based on SIGNIFICANT PACF and Renaund Et al. Proposal. Check 

the accuracy of the model by selecting the MAR model that has the smallest RMSE. 

 
Table 5. RMSE values at Levels 1-6 

Level AIC RMSE 

1 4996.024 76.77699* 

2 4918.201 76.31107 

3 4909.316 74.63827 

4 4909.522 74.30664* 

5 4907.36 73.94456 

6 4898.652 73.53704 

 

*) based on stepwise level 1 and level 4 results all have significant variables at a rate 

of significance of 5%.   

 

Thus, the RMSE value of the MAR model level 1 is 76.77699. while the RMSE 

value of the MAR model level 4 is 74.30664. So, the better MAR model used is the MAR 

model at level 4 because it has a smaller RMSE value. 

 

4. CONCLUSION 

Based on the results of the analysis can be concluded that for the problem of data 

Exchange rate the best model used is the mar model which is best is the MAR model in 

accordance with renaund et al proposal with RMSE value. The RMSE MAR level 4 

value is smaller than the RMSE ARIMA value, which is 74.30664 < 76.89935. And 

also the residual ARIMA is not white noise. So the level 4 MAR model is better to use 

than the ARIMA model 
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