Perkembangan dan Aplikasi Biomaterial dalam Bidang Kedokteran Modern: A Review


  • Irza Sukmana Jurusan Teknik Mesin FT Universitas Lampung
  • Ahmad Yudi Eka Risano Universitas Lampung, Gedung A, Lt 2 FT, Jl. Prof. Soemantri Brojonegoro
  • Mahruri Arif Wicaksono Universitas Lampung, Gedung A, Lt 2 FT, Jl. Prof. Soemantri Brojonegoro
  • Rizal Adi Saputra Universitas Lampung, Gedung A, Lt 2 FT, Jl. Prof. Soemantri Brojonegoro



medical devices, biomaterials, biocompatibility, advanced biomaterials


The medical device market in Indonesia experiences growth every year, Indonesia implements imports of medical devices. Indonesia has many experts in the field of medical devices and their production processes, at university, research institutions and other government institutions. The government provides multi-year grants for research on biomaterials and medical devices. Materials to make medical devices are called biomaterials. Biomaterials can be defined as synthetic materials that interact directly with living bodies in the form of implants or as medical devices. Biomaterials can function to repair, replace, support and or restore parts of the human body. Biomaterials have undergone many developments, types of biomaterials, advanced biomaterials adapted to applications in the medical field. Biomaterials can be in the form of metals, ceramics, polymers or composites with research that continues to advance and be developed. This paper aims to highlight types and application of biomaterials in the medical field as well as the potential application of advanced biomaterials in the future.


Download data is not yet available.


Kemenkes – Kementerian Kesehatan Republik Indonesia. (2018). Perkembangan Industri Alat Kesehatan Dalam Negeri Meningkat.

CNBC Indonesia. (2021). Impor Alat Kesehatan. CNBC Television broadcast. Jakarta, Profit CNBC Indonesia

Mahyudin, F., and Hermawan, H. (2016). Biomaterials and Medical Devices: A Perspective from an Emerging Country. Heidelberg: Springer

Ratner, B.D., et al., (2004). Biomaterial Science, 2nd Edition, Elsevier Academic Press, San Diego, California, USA

Williams, D.F. (1987). Definitions in Biomaterials. Progress in Biomedical Engineering. Amsterdam : Elsevier.

Park, J.B., and Lakes, R.S. (2007). Biomaterials: An Introduction. 3rd ed. Heidelberg: Springer

Hermawan, et al. (2010). Development of Metal Biodegradable Stent, Acta Biomaterial 6:1693–1697

Kokubo, T. (2008). Bioceramics Clinical Applications. Cambridge: Woodhead Publishing

Gupta, B., Revagade, N. and Hilborn, J. (2007). Poly(LA) fiber: an overview. Prog Polym Sci 34. PP. 455–482.

Cheng, T. S., Uy Lan, D. N., Phillips, S., and Tran, L. Q. N. (2018). Characteristics of Oil Palm Empty Fruit Bunch Fiber and Mechanical Properties of Its Unidirectional Composites. Singapore Institute of Manufacturing Technology (SIMTech) : A-STAR. DOI 10.1002/pc.24824

Yang, K, and Ren, Y. (2010). Nickel-Free Austenitic Stainless Steels for Medical Applications. Sci

Hermawan, H., and Mantovani, D. (2009) Biomaterial as Biodegradable Metals : A Concept Advance. Minerva Biotechnol 21:207–216

Witte, F., et al. (2006). Book of Biomaterials. Ed. 27. Vol. 10

Fisher, J.P., Mikos, A.G., and Bronzino, J.D. (2007). Tissue Enginering and Artificial Organs. CRC Press: Taylor and Francis group

Staiger, M.P., Pietak, A.M.H., Huadmai, J., and Dias, G. (2006). Titanium, Magnesium and its Alloys as Orthopedic Biomaterials: A Review. Biomaterials. Vol. 27, ed. 17, hal.28–34

John, C.W. (2000). Biocompatibility of Dental Casting Alloys: A review. J Pros Dent :83:223-34

Wang, Y.B., Zheng, Y.F., Wei, S.C., and Li, M. (2011). In Vitro Study on Zr-Based Bulk Metallic Glasses as Potential Biomaterials. J Biomed Mater Res 96B:34-46

Zberg, B., Uggowitzer P.J., and Loffler, J.F. (2009). Mg-Zn-Ca Glasses Without Clinically Observable Hydrogen Evolution for Biodegradable Implants. Nature Materials 2009; 8 : 887-91

Jenkins, M. (2007). Biomedical Polymers. Cambridge: Woodhead Publishing

Ambrosio, L. (2009). Biomedical Composites. Cambridge: Woodhead Publishing

Sherman, W.O. (1912). Vanadium Steel Bone Plates and Screws. Surg Gynecol Obstet ;14:629-34

Witte, F. (2010). The History of Biodegradable Magnesium Implants: A Review. Acta Biomaterial. Vol. 6. Ed. 16, hal. 80–92

Auras, R., Lim, L.T., Selke, M. and Tsuji, H. (2010). Poly (LA): Synthesis, Structures, Properties, Processing, and Application. Hoboken NJ: John Wiley & Sons Inc

Zeng, R.C., Dietzel, W., Witte, F., Hort, and Blawert, C. (2008). Advanced Basic of Engineering Materials. Hal. 10 B3.

Hermawan, H. (2018). Updates on Research and Development of Absorbable Metals for Biomedical Devices. Prog Biomater 7:93-110

Stack, R.S., Califf R.M., Phillips, H.R., Pryor, D.B. and Quigley, P.J. (1988). Interventional Cardiac Catheterization at Duke Medical Center. Am J Cardiol 62:3F-24F

Kuroda, D., Niinomi M., Morinaga M., Kato, Y., and Yashiro, T. (1998). Design and Mechanical Properties of New Type Titanium Alloys for Implant Materials. Mater Sci Eng A. 243:244-9

Matsumoto, H., Watanabe S., and Hanada, S. (2005). Beta Ti-Nb-Sn Alloys with Low Young’s Modulus and High Strength. Mater Trans ; 46:1070-8

Lee, S.H., Nomura N., and Chiba A. (2008). Significant Improvement in Mechanical Properties of Biomedical Co-Cr-Mo Alloys with Combination of N Addition and Cr-Enrichment. Mater Trans, 49:26

Chiba, A., Lee, S.H., Matsumoto, H., and Nakamura, M. (2009). Construction of Processing Map for Biomedical Co-28Cr-6Mo-0.16N Alloy by Studying its Hot Deformation Behavior Using Compression Tests. Mater Sci Eng A 513-514:286-93

Ryan, G., Pandit, A., and Apatsidis, D.P. (2006). Fabrication Methods of Porous Metals for Use in Orthopaedic Applications. Biomaterials 27:2651-70

Lopez, H.M.A., Sohier, J., Gaillard, C., Quillard, S. and Dorget, M. (2008). Rapid Prototyped Porous Titanium Coated with Calcium Phosphate as a Scaffold for Bone Tissue Engineering. Biomaterials ; 29:2608-15.

Ryan, G.E., Pandit A.S., and Apatsidis, D.P. (2008). Porous Titanium Scaffolds Fabricated Using a Rapid Prototyping and Powder Metallurgy Technique. Biomaterials 29:3625-35

Li, J.P., Habibovic, P., Van den Doel, M., Wilson, C.E., and De Wijn, J.R. (2007). Bone Ingrowth in Porous Titanium Implants Produced by 3D Fiber Deposition. Biomaterials 28:281020.

Hollander, D.A., Von Walter, M., Wirtz, T., Sellei, R. And Schmidt-Rohlfing B. (2006). Structural, Mechanical and In Vitro Characterization of Individually Structured Ti-6Al-4V Produced by Direct Laser Forming. Biomaterials 27:955-63

Hutmacher, D.W., Sittinger M., and Risbud, M.V. (2004). Scaffold-Based Tissue Engineering: Rationale for Computer-Aided Design and Solid Free-Form Fabrication Systems. Trend Biotechnol 22:354- 62

Schroers, J., Kumar, G.., Hodges, T., Chan, S., and Kyriakides, T. (2009). Bulk Metallic Glasses for Biomedical Applications. JOM 61:21-9

Chen, Q., Liu, L., and Zhang, S.M. (2010). The potential of Zr-based Bulk Metallic Glasses as Biomaterials. Front Mater Sci China 2010 ; 4 : 34-44

Johnson, W. (2002). Bulk Amorphous Metal an Emerging Engineering Material. JOM 54:40-3

Nair, L. S., and Laurencin, C. T. (2006). Polymers as Biomaterials for Tissue Engineering and Controlled Drug Delivery, Adv Biochem Engin/Biotechnol, Vol. 102, pp. 47–90

Langer, R. (2000). Biomaterials in Drug Delivery and Tissue Engineering: One Laboratory's Experience. Acc. Chem. Res. Vol. 33. No. 2. PP. 94-101.

D. Purnomo, “Model Prototyping Pada Pengembangan Sistem Informasi,” J I M P - J. Inform. Merdeka Pasuruan, vol. 2, no. 2, pp. 54–61, 2017, doi: 10.37438/jimp.v2i2.67.

Yulisman and Serdiansah, “Aplikasi Pengenalan Kebudayaan Provinsi Riau Berbasis Android,” J. Teknol. Sist. Inf. dan Apl., vol. 2, no. 3, pp. 79–90, 2019, doi:




How to Cite

Sukmana, I., Eka Risano, A. Y. ., Arif Wicaksono, M. ., & Adi Saputra, R. . (2022). Perkembangan dan Aplikasi Biomaterial dalam Bidang Kedokteran Modern: A Review. INSOLOGI: Jurnal Sains Dan Teknologi, 1(5), 635–646.