Analisis Tingkat Kepuasan Pengguna Aplikasi Ojek Online Dengan Metode Naive Bayes

Authors

  • Wulan Dari Universitas Potensi Utama
  • Elen Tania Hanayah Universitas Potensi Utama

DOI:

https://doi.org/10.55123/insologi.v2i1.1693

Keywords:

Prediction, Online Ojek, Naive Bayes

Abstract

In today's digital era, activities in various transportation service processes are increasingly sophisticated, which of course makes the implementation process easier. One example of the impact that can be felt is the presence of an online-based motorcycle taxi service which is the latest breakthrough in the development of technology and information in the field of transformation which is currently being increasingly used and favored by the public. Analyzing the level of satisfaction of online motorcycle taxi users also needs to be carried out, in order to find out how the public views the quality of services that have been provided by drivers. This study uses survey methods, literature studies and the application of the Naive Bayes algorithm. The results of this study are able to provide detailed explanations and elaborations regarding how the level of satisfaction is from the point of view of online motorcycle taxi service users and related to the indicators used using the Naive Bayes algorithm. From the results of this study, it is hoped that it can become a source of reference on how important it is to understand and implement the use of naive bates in making decisions from a number of data, one of which is in terms of determining the level of user satisfaction with what is provided by online motorcycle taxi drivers.

Downloads

Download data is not yet available.

References

Anindhita, W., Arisanty, M., & Rahmawati, D. (2016, November). Analisis Penerapan Teknologi Komunikasi Tepat Guna Pada Bisnis Transportasi Ojek Online (Studi pada Bisnis Gojek dan Grab Bike dalam Penggunaan Teknologi Komuniasi Tepat Guna untuk Mengembangkan Bisnis Transportasi). In Prosiding Seminar Nasional INDOCOMPAC.

Nugroho, D. G., Chrisnanto, Y. H., & Wahana, A. (2016). Analisis Sentimen Pada Jasa Ojek Online Menggunakan Metode Naive Bayes. Prosiding SNST Fakultas Teknik, 1(1).

Syafrino, A. (2017). Efisiensi Dan Dampak Ojek Online Terhadap Kesempatan Kerja Dan Kesejahteraan.

Yusnita, A., & Handini, R. (2012). Sistem Pendukung Keputusan Menentukkan Lokasi Umah Makan Yang Strategis Menggunakan Metode Naive Bayes. Semantik, 2(1).

Anggriana, R., Qomariah, N., & Santoso, B. (2017). Pengaruh Harga, Promosi, Kualitas Layanan Terhadap Kepuasan Pelanggan Jasa Ojek Online “OM-JEK” Jember. Jurnal Sains Manajemen Dan Bisnis Indonesia, 7(2).

Rifqo, M. H., & Wijaya, A. (2017). Implementasi Algoritma Naive Bayes Dalam Penentuan Pemberian Kredit. Pseudocode, 4(2), 120-128.

Utami, E. (2022). Comparison Naïve Bayes Classifier, K-Nearest Neighbor And Support Vector Machine In The Classification Of Individual On Twitter Account. Jurnal Teknik Informatika (JUTIF), 3(3), 673-680.

Nugroho, Y. S. (2016). Prediksi Rating Film Menggunakan Metode Naïve Bayes. Jurnal Teknik Elektro, 8(2), 60-63.

Gunawan, B., Sastypratiwi, H., & Pratama, E. E. (2018). Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 4(2), 113-118.

Jananto, A. (2013). Algoritma Naive Bayes untuk Mencari Perkiraan Waktu Studi Mahasiswa. Dinamik, 18(1).

E. Rouza, Basorudin, and Efrida, “Identifikasi dan Klasifikasi UMKM di Kabupaten Rokan Hulu Menggunakan Metode K-Means,” Riau Journal of Computer Science, vol. 7, no. 1, pp. 32–40, 2021.

P. P. P. A. N. . F. I. R.H Zer, Masitha, A. P. Windarto, and A. Wanto, “Analysis of the ELECTRE Method on the Selection of Student Creativity Program Proposals,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–7, 2019.

Downloads

Published

2023-02-28

How to Cite

Dari, W., & Elen Tania Hanayah. (2023). Analisis Tingkat Kepuasan Pengguna Aplikasi Ojek Online Dengan Metode Naive Bayes. INSOLOGI: Jurnal Sains Dan Teknologi, 2(1), 221–232. https://doi.org/10.55123/insologi.v2i1.1693