Sebaran Particulate Matter (PM10, PM2,5, PM1, PM0,1) di SMP Negeri 1 Kota Jambi Menggunakan Model CFD (Computational Fluid Dynamics)

Authors

  • Febri Juita Anggraini Universitas Jambi
  • Annisa Shalsabila Universitas Jambi
  • Zuli Rodhiyah Universitas Jambi

DOI:

https://doi.org/10.55123/insologi.v2i4.2269

Keywords:

Particulate Matter, Dispersion Modelling, COMPUTATIONAL FLUID DYNAMICS

Abstract

One source that contributes greatly to urban air quality is traffic. The proximity of schools to vehicles will put students at greater risk of exposure to high concentrations of particulate matter. SMP Negeri 1 Jambi City is an education center located in an urban area and adjacent to a busy road. CFD models are good at modeling the movement of pollutants in urban areas by taking into account the influence of buildings. The purpose of this study is to determine the concentration of PM10, PM2.5, PM1, and PM0.1 at SMPN 1 Jambi City based on direct measurement results and CFD modeling results and then see how accurate the modeled PM concentrations are when compared to the results of direct measurements. The results showed that the average concentrations of PM10, PM2.5, PM1, and PM0.1 from direct measurements were 20.66 µg/m3, 11.79 µg/m3, 8.74 µg/m3, and 1.96 µg/m3, respectively, while the modeling results showed lower average concentrations. The ratio of the difference between the measured and modeled PM concentrations is in the range of 11.67 - 233.45% and with the percentage of RMSPE obtained >30% (invalid), where the requirement for a modeling to be valid so that the results can be trusted in explaining the actual phenomenon is when the validity percentage is <30%.

Downloads

Download data is not yet available.

References

Amalia, A., & Marshita, F. B. (2021). Pengaruh Faktor Meteorologis Terhadap Perubahan Konsentrasi PM10 Periode Sebelum dan Saat PSBB di Kota Surabaya dan Sekitarnya. Buletin GAW Bariri (BGB), 2(1), 24–36. https://doi.org/10.31172/bgb.v2i1.42

Chaisri, P., & Ponpesh, P. (2022). Prediction of PM2.5 Dispersion in Bangkok Pathumwan District) Using CFD Modeling. Engineering Journal, 26(6), 1–13. https://doi.org/10.4186/ej.2022.26.6.1

Darmadi, D. (2021). Kajian Hasil Prediksi Konsentrasi Aerosol PM10 Dari Data ECMWF Dengan Hasil Pengukuran Di Stasiun Pemantau Atmosfer Global Bukit Kototabang (Agam) dan Kota Padang. Megasains, 12(1), 26–33. https://doi.org/10.46824/megasains.v12i1.59

Environment Protection Authority. (2021). Ambient Air Monitoring Guidance Note. NSW Environment Protection Authority. https://www.epa.nsw.gov.au/

Environmental Protection Agency. (2022). Air Quality Models. Support Center for Regulatory Atmospheric Modeling (SCRAM). https://www.epa.gov/scram/air-quality-models#:~:text=Air quality models use mathematical,and react in the atmosphere.

Garcia, J., Cerdeira, R., Tavares, N., Coelho, L. M. R., Kumar, P., & Carvalho, M. G. (2013). Influence of Virtual Changes in Building Configurations of a Real Street Canyon on the Dispersion of PM10. Urban Climate, 5, 68–81. https://doi.org/10.1016/j.uclim.2013.08.002

Gauderman, W. J., Avol, E., Gilliland, F., Vora, H., Thomas, D., Berhane, K., McConnell, R., Kuenzli, N., Lurmann, F., Rappaport, E., Margolis, H., Bates, D., & Peters, J. (2004). The Effect of Air Pollution on Lung Development from 10 to 18 Years of Age. The New England Journal of Medicine, 352(11), 687–696. https://www.nejm.org/doi/full/10.1056/nejmoa040610

Kementerian Lingkungan Hidup. (2013). Pedoman Teknis Penyusunan Inventarisasi Emisi Pencemar Udara di Perkotaan. In Pedoman Teknis Penyusunan Inventarisasi Emisi Pencemar Udara di Perkotaan. Kementerian Lingkungan Hidup.

Kementerian Pendidikan, Kebudayaan, Riset, dan T. (2021). Jumlah Siswa Menurut Umur/Kelompok Umur Tiap Provinsi. Statistik Pendidikan.

Kumaat, M. (2004). Transportasi dan Polusi pada Kawasan Pendidikan. Tekno-Sipil, 10(57), 27–32.

Lara, I. R. (2015). Air Quality in Schools and Children’s Exposure to Particulate Pollution in Barcelona. Universitat Autonoma de Barcelona.

Lauriks, T., Longo, R., Baetens, D., Derudi, M., Parente, A., Bellemans, A., van Beeck, J., & Denys, S. (2021). Application of Improved CFD Modeling for Prediction and Mitigation of Traffic-Related Air Pollution Hotspots in a Realistic Urban Street. Atmospheric Environment, 246, 1–30. https://doi.org/10.1016/j.atmosenv.2020.118127

Nikolova, I., Janssen, S., Vos, P., Vrancken, K., Mishra, V., & Berghmans, P. (2011). Dispersion Modelling of Traffic Induced Ultrafine Particles in a Street Canyon in Antwerp, Belgium and Comparison with Observations. Science of the Total Environment, 412–413, 336–343. https://doi.org/10.1016/j.scitotenv.2011.09.081

Ntziachristos, L., & Boulter, P. (2019). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019. European Environment Agency.

Pospisil, J., Huzlik, J., Licbinsky, R., & Spilacek, M. (2020). Dispersion Characteristics of PM10 Particles Identified by Numerical Simulation in the Vicinity of Roads Passing Through Various Types of Urban Areas. Atmosphere, 11(5). https://doi.org/10.3390/ATMOS11050454

Ramakrishna, M. (2011). Elements of Computational Fluid Dynamics. In A Golden Jubilee.

Slezakova, K., Morais, S., & Carmo Pereir, M. do. (2013). Atmospheric Nanoparticles and Their Impacts on Public Health. In Current Topics in Public Health (pp. 503–529).

Tiwary, A., Williams, I., & Colls, J. (2019). Air Pollution : Measurement, Modelling and Mitigation (Fourth Edi). CRC Press.

Wadlow, I., Paton-Walsh, C., Forehead, H., Perez, P., Amirghasemi, M., Guérette, élise A., Gendek, O., & Kumar, P. (2019). Understanding Spatial Variability of Air Quality in Sydney: Part 2-a Roadside Case Study. Atmosphere, 10(4), 1–23. https://doi.org/10.3390/ATMOS10040217

Wang, Y., Zhou, Y., Zuo, J., & Rameezdeen, R. (2018). A Computational Fluid Dynamic (CFD) Simulation of PM10 Dispersion Caused by Rail Transit Construction Activity: A Real Urban Street Canyon Model. International Journal of Environmental Research and Public Health, 15(3), 1–30. https://doi.org/10.3390/ijerph15030482

Zhang, Q., & Zhu, Y. (2012). Characterizing ultrafine particles and other air pollutants at five schools in South Texas. Indoor Air, 22(1), 33–42. https://doi.org/10.1111/j.1600-0668.2011.00738.x

Downloads

Published

2023-08-28

How to Cite

Febri Juita Anggraini, Annisa Shalsabila, & Zuli Rodhiyah. (2023). Sebaran Particulate Matter (PM10, PM2,5, PM1, PM0,1) di SMP Negeri 1 Kota Jambi Menggunakan Model CFD (Computational Fluid Dynamics). INSOLOGI: Jurnal Sains Dan Teknologi, 2(4), 690–702. https://doi.org/10.55123/insologi.v2i4.2269