Pemetaan Kerentanan Tingkat Kriminalitas Menggunakan Metode Self Organizing Map

Authors

  • Ruziq Nawaf Zulfahmi Institut Sains & Teknologi AKPRIND Yogyakarta
  • Maria Kristiana Daul Institut Sains & Teknologi AKPRIND Yogyakarta
  • Muhammad Al Ayyubi Institut Sains & Teknologi AKPRIND Yogyakarta
  • I Wayan Julianta Pradnyana Institut Sains & Teknologi AKPRIND Yogyakarta
  • Rokhana Dwi Bekti Institut Sains & Teknologi AKPRIND Yogyakarta

DOI:

https://doi.org/10.55123/insologi.v2i5.2566

Keywords:

Crime, SOM, Cluster, Mapping

Abstract

The crime rate in an area can be a serious problem and can endanger the safety and welfare of the community. One important aspect in handling crime problems is understanding and disclosing patterns and characteristics of criminal incidents. This understanding is the basis for formulating effective crime prevention and control policies. Methods that have been widely used include Self-Organizing Map (SOM). Self-Organizing Mapping (SOM) was introduced in 1982 by Teuvo Kohonen as an unsupervised learning method. SOM can perform fairly valid and unbiased mapping, allowing it to map feature-based datasets through self-organization rules. The SOM architecture or what is often called a coherent network is a network consisting of two layers, namely the input layer and the output layer. Every neuron in the input layer is connected to every neuron in the output layer. Each neuron in the output layer interprets the class of the input provided. Based on the research results, it was found that it was certain that the best cluster was in cluster 2 for districts/cities in the Special Region of Yogyakarta, Central Java and East Java. Cluster 1 consists of 15 districts/cities, and cluster 2 consists of 63 districts/cities

Downloads

Download data is not yet available.

References

Imani, N., Alfassa, A. I., & Yolanda, A. M. (2023). Analisis Cluster Terhadap Indikator Data Sosial Di Provinsi Nusa Tenggara Timur Menggunakan Metode Self Organizing Map (Som). Jurnal Gaussian, 11(3), 458–467. https://doi.org/10.14710/j.gauss.11.3.458-467

Latifah, R., Efendi, R., & Erlansari, A. (2020). Rancang Bangun Implementasi Metode Jaringan Syaraf Tiruan Self Organizing Map Kohonen dalam Identifikasi Telapak Tangan Manusia. Jurnal Rekursif, 8(2), 153–162. http://ejournal.unib.ac.id/index.php/rekursif/153

Nisrina, S., Nurmayanti, W. P., Basirun, Kertanah, & Muhammad Gazali. (2022). Penerapan Metode Clustering SOM dan DBSCAN dalam Mengelompokkan Unmet Need Keluarga Berencana di Nusa Tenggara Barat. J Statistika: Jurnal Ilmiah Teori Dan Aplikasi Statistika, 15(2), 237–244. https://doi.org/10.36456/jstat.vol15.no2.a5549

Pangestu, B., Fatichah, C., & Purwitasari, D. (2017). Kartografi Menggunakan Self-Organizing Maps.

Rosliana, R. (2023). Daerah di Jawa Timur dengan Angka Kriminalitas Paling Tinggi. Harian Jogja. https://news.harianjogja.com/read/2023/05/29/500/1136769/daerah-di-jawa-timur-dengan-angka-kriminalitas-paling-tinggi

Sudarmawan. (2023). Tingkat Kriminal Di Jatim Tertinggi Kedua Se Indonesia, Kemenkumham Dorong Penerapan Restorative Justice. REPUBLIKA JATIM. https://republikjatim.com/baca/tingkat-kriminal-di-jatim-tertinggi-kedua-se-indonesia-kemenkumham-dorong-penerapan-restorative-justice

Suwirmayanti, N. L. G. P. (2020). Penerapan Teknik Clustering Untuk Pengelompokkan Konsentrasi Mahasiswa Dengan Metode Self Organizing Map. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 2(01), 11–20. https://doi.org/10.46772/intech.v2i01.182

Downloads

Published

2023-10-28

How to Cite

Ruziq Nawaf Zulfahmi, Maria Kristiana Daul, Muhammad Al Ayyubi, I Wayan Julianta Pradnyana, & Rokhana Dwi Bekti. (2023). Pemetaan Kerentanan Tingkat Kriminalitas Menggunakan Metode Self Organizing Map . INSOLOGI: Jurnal Sains Dan Teknologi, 2(5), 872–881. https://doi.org/10.55123/insologi.v2i5.2566