Optimization of Xylitol Production from Tobacco Stem Using Ultrasound-Assisted Acid Hydrolysis Coupled with Fermentation
DOI:
https://doi.org/10.55123/insologi.v4i4.6084Keywords:
Xylitol, Tobacco, Ultrasound-Assisted Acid Hydrolysis, Fermentation, OptimizationAbstract
Tobacco (Nicotiana tabacum L.), as one of the main commodities in East Java Province, where only the leaves are utilized, while the stems become agricultural waste and are often burned, contributes to air pollution. Nonetheless, these tobacco stems possess potential for high-value chemical products, such as xylitol. This study investigated the optimum operating conditions for producing xylitol from tobacco stem waste. The process employed Ultrasound-Assisted Acid Hydrolysis followed by fermentation using Candida tropicalis. Hydrolysis was conducted in an ultrasonic bath that operates at 40 kHz and 50 watts, using 0.1 N H₂SO₄ as the solvent. The resulting hydrolysate was then fermented by adding Candida tropicalis (20 mL per 100 mL substrate) and incubating for 48 hours, 30 °C, 120 rpm shaker. Optimization was conducted utilizing Response Surface Methodology method to assess the interactions between operating variables (temperature, time, and volume of solvent during hydrolysis) and xylitol yield. The study investigated the optimum operating conditions to produce xylitol were 30 °C, 50 minutes, and 150 mL of solvent, yielding xylitol at a concentration of 5.6 g/L.
Downloads
References
Amirudin, M., Novita, E., & Tasliman, T. (2020). Analisis variasi konsentrasi asam sulfat sebagai aktivasi arang aktif berbahan batang tembakau (Nicotiana tabacum). Agroteknika, 3(2), 99–108.
Ayu, N. P. F., Nurhayati, N., Thontowi, A., Kusdiyantini, E., Kanti, A., & Hermiati, E. (2021). Produksi Xilitol Menggunakan Hidrolisat Tongkol Jagung (Zea mays) Oleh Meyerozyma caribbica InaCC Y67. Bioma: Berkala Ilmiah Biologi, 23(1), 71–77.
Cardoso, B. S., & Forte, M. B. S. (2021). Purification of biotechnological xylitol from Candida tropicalis fermentation using activated carbon in fixed-bed adsorption columns with continuous feed. Food and Bioproducts Processing, 126. https://doi.org/10.1016/j.fbp.2020.12.013
Chaturvedi, T., Hulkko, L. S. S., Fredsgaard, M., & Thomsen, M. H. (2022). Extraction, isolation, and purification of value-added chemicals from lignocellulosic biomass. Processes, 10(9), 1752.
Delgado Arcaño, Y., Valmaña García, O. D., Mandelli, D., Carvalho, W. A., & Magalhães Pontes, L. A. (2020). Xylitol: A review on the progress and challenges of its production by chemical route. In Catalysis Today (Vol. 344). https://doi.org/10.1016/j.cattod.2018.07.060
Dewi, S. S., Ermina, R., Kasih, V. A., Hefiana, F., Sunarmo, A., & Widianingsih, R. (2023). Analisis Penerapan Metode One Way Anova Menggunakan Alat Statistik Spss. Jurnal Riset Akuntansi Soedirman, 2(2), 121–132.
Diantoro, A., Arum, M. S., Mualimin, L., & Setyawijayanto, D. (2022). Optimasi Ekstraksi Metode Microwave Assisted Extraction (Mae) Pada Sarang Semut (Myrmecodia Pendans). Jurnal Pangan Dan Agroindustri, 10(4).
Fairus, S., Kurniawan, R., Taufana, R., & Nugraha, A. S. (2013). Kajian pembuatan xilitol dari tongkol jagung melalui proses fermentasi. Al-Kauniyah: Jurnal Biologi, 6(2), 91–100.
Fernianti, D., Juniar, H., & Adinda, N. D. (2020). Pengaruh massa ossein dan waktu ekstraksi gelatin dari tulang ikan tenggiri dengan perendaman asam sitrat belimbing wuluh. Jurnal Distilasi, 5(2), 1–9.
Flores, E. M. M., Cravotto, G., Bizzi, C. A., Santos, D., & Iop, G. D. (2021). Ultrasound-assisted biomass valorization to industrial interesting products: state-of-the-art, perspectives and challenges. In Ultrasonics Sonochemistry (Vol. 72). https://doi.org/10.1016/j.ultsonch.2020.105455
Gasmi Benahmed, A., Gasmi, A., Arshad, M., Shanaida, M., Lysiuk, R., Peana, M., Pshyk-Titko, I., Adamiv, S., Shanaida, Y., & Bjørklund, G. (2020). Health benefits of xylitol. In Applied Microbiology and Biotechnology (Vol. 104, Issue 17). https://doi.org/10.1007/s00253-020-10708-7
Gautam, D., Rana, V., Sharma, S., Kumar Walia, Y., Kumar, K., Umar, A., Ibrahim, A. A., & Baskoutas, S. (2025). Hemicelluloses: A Review on Extraction and Modification for Various Applications. ChemistrySelect, 10(24), e06050.
Hidayat, I. R., Zuhrotun, A., & Sopyan, I. (2021). Design-expert software sebagai alat optimasi formulasi sediaan farmasi. Majalah Farmasetika, 6(1), 99–120.
Hilpmann, G., Kurzhals, P., Reuter, T., & Ayubi, M. M. (2020). Reaction Kinetics of One-Pot Xylan Conversion to Xylitol via Precious Metal Catalyst. Frontiers in Chemical Engineering, 2, 600936.
Kaur, S., Guleria, P., & Yadav, S. K. (2023). Evaluation of Fermentative Xylitol Production Potential of Adapted Strains of Meyerozyma caribbica and Candida tropicalis from Rice Straw Hemicellulosic Hydrolysate. Fermentation, 9(2). https://doi.org/10.3390/fermentation9020181
Mardawati, E., Hartono, A. T., Nurhadi, B., Fitriana, H. N., Hermiati, E., & Ermawar, R. A. (2022). Xylitol production from pineapple cores (Ananas comosus (L.) Merr) by enzymatic and acid hydrolysis using microorganisms Debaryomyces hansenii and Candida tropicalis. Fermentation, 8(12), 694.
Ministry of Agriculture. (2024). Buku Outlook Komoditas Perkebunan Tembakau 2024. https://satudata.pertanian.go.id/assets/docs/publikasi/Outlook_Tembakau_F.pdf
Mudrikah, S., Hidayah, H., Amelia, T., & Helsen, H. (2024). Perbandingan Metode Analisis Instrumen HPLC dan Spektrofotometer UV-VIS. Jurnal Ilmiah Wahana Pendidikan, 10(13), 377–386.
Munawiroh, S. Z., Handayani, F. S., & Nugroh, B. H. (2020). Optimasi formulasi nanoemulsi minyak biji anggur energi tinggi dengan Box Behnken Design (BBD). Majalah Farmasetika, 4, 93–99.
Najjoum, N., Grimi, N., Benali, M., Chadni, M., & Castignolles, P. (2025). Extraction and chemical features of wood hemicelluloses: A review. International Journal of Biological Macromolecules, 311, 143681.
Pramasari, D. A., Oktaviani, M., Thontowi, A., Purnawan, A., Ermawar, R. A., Sondari, D., Ningrum, R. S., Laksana, R. P. B., Lianawati, A., Fahrezi, M. Z. M., Salsabila, Q., & Hermiati, E. (2023). The use of hemicellulose acid hydrolysate for hydrolysis of sugarcane trash and its fermentation for producing xylitol. Industrial Crops and Products, 193. https://doi.org/10.1016/j.indcrop.2022.116163
Pratiwi, G., Arina, Y., Tari, M., Shiyan, S., & Prasasty, M. A. A. (2023). Optimasi Formula Lipstik Ekstrak Biji Coklat (Theobroma cacao L.) Dengan Kombinasi Basis Carnauba Wax dan Paraffin Wax Menggunakan Metode Simplex Lattice Design. Jurnal’Aisyiyah Medika, 8(1).
Purnawan, A., Thontowi, A., Kholida, L. N., & Perwitasari, U. (2021). Hidrolisis Biomasa Lignoselulosa Untuk Xilitol. Jurnal Ilmu Lingkungan, 19(3), 485–496.
Ridhuan, K., Wahyudi, T. C., Sulistiyo, D., & Anggara, B. (2021). Karaktristik proses destilasi asap cair grade 3. Turbo: Jurnal Program Studi Teknik Mesin, 10(2).
Sabancı, S., Akpınar, Ö., Bölükbaşı, U., Yılmaz, L., & Uysal, R. S. (2016). XYLITOL BIOPRODUCTION FROM TOBACCO STALK. Deu Muhendislik Fakultesi Fen ve Muhendislik, 18(52). https://doi.org/10.21205/deufmd.20165217549
Sasongko, A., & Legahati, N. (2020). Pengaruh konsentrasi asam sitrat dan daya ultrasonik pada produksi oligosakarida dari biji Salacca zalacca dengan metode Ultrasonic Assisted Acid Hydrolysis (UAAH). PROSIDING SNITT POLTEKBA, 4, 395–400.
Slamet, A. H. H., Setiawan, D., Mutmainah, D. N., Fatinia, L. A., & Damayanti, R. (2022). Analisis nilai tambah dan strategi pengembangan pengolahan limbah batang tembakau menjadi tobacco xylitol. Jurnal Manajemen, 2(1).
Snyder, L. R., Kirkland, J. J., & Dolan, J. W. (2011). Introduction to modern liquid chromatography. John Wiley & Sons.
Subroto, E. (2020). Chemical and Biotechnological Methods for the Production of Xylitol: A Review. International Journal of Emerging Trends in Engineering Research, 8(6). https://doi.org/10.30534/ijeter/2020/49862020
Tumanduk, R., Massi, M. N., Agus, R., & Hamid, F. (2023). Analisis residu amoksisilin pada hepar dan ventrikulus ayam petelur di Pasar Tradisional Makassar. Jurnal Ilmu Alam Dan Lingkungan, 14(2).
Umai, D., Kayalvizhi, R., Kumar, V., & Jacob, S. (2022). Xylitol: Bioproduction and Applications-A Review. In Frontiers in Sustainability (Vol. 3). https://doi.org/10.3389/frsus.2022.826190
Valentino, R., & Lubis, S. (2021). Analisis Korelasi Parameter Pemotongan Proses Pembubutan Grey Cast Iron Menggunakan Metode Anova. ., 2(2), 316–330.
Vardhan, H., Sasamal, S., & Mohanty, K. (2023). Xylitol production by Candida tropicalis from areca nut husk enzymatic hydrolysate and crystallization. Applied Biochemistry and Biotechnology, 195(12), 7298–7321.
Yulianto, M. F. R., & Devina, S. P. (2024). Ekstraksi Antosianin Buah Naga Menggunakan Metode Solvent Extraction. Journal of Biobased Chemicals, 4(1), 69–80.
Zhang, J., Xu, T., Wang, X., Jing, X., Zhang, J., Hong, J., Xu, J., & Wang, J. (2022). Lignocellulosic xylitol production from corncob using engineered Kluyveromyces marxianus. Frontiers in Bioengineering and Biotechnology, 10, 1029203.
Zhang, L., Chen, Z., Wang, J., Shen, W., Li, Q., & Chen, X. (2021). Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor. Microbial Cell Factories, 20(1). https://doi.org/10.1186/s12934-021-01596-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yukti Nurani, Bekti Palupi, Diana Madhuri, Diah Tri Wulandari, Ansori Ansori

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak cipta pada setiap artikel adalah milik penulis.
Penulis mengakui bahwa INSOLOGI (Jurnal Sains dan Teknologi) sebagai publisher yang mempublikasikan pertama kali dengan lisensi Creative Commons Attribution 4.0 International License.
Penulis dapat memasukan tulisan secara terpisah, mengatur distribusi non-ekskulif dari naskah yang telah terbit di jurnal ini kedalam versi yang lain, seperti: dikirim ke respository institusi penulis, publikasi kedalam buku, dan lain-lain. Dengan mengakui bahwa naskah telah terbit pertama kali pada INSOLOGI (Jurnal Sains dan Teknologi).
























