Analisis Deteksi Penyakit Daun Pisang Menggunakan Ekstraksi Fitur CNN (MobileNetV2) dan Klasifikasi SVM

Authors

  • Yuyun Yusnida Lase Politeknik Negeri Medan
  • Lampson Pindahaman Purba Politeknik Negeri Medan
  • Santi Prayudani Politeknik Negeri Medan
  • Arif Ridho Lubis Politeknik Negeri Medan
  • Hikmah Adwin Adam Politeknik Negeri Medan

DOI:

https://doi.org/10.55123/insologi.v4i6.6590

Keywords:

Disease Detection, Banana Plants, Image Processing, Support Vector Machine, Classification

Abstract

Banana plants (Musa spp.) are one of the leading horticultural commodities in Indonesia that have high economic value and play an important role in national food security. However, banana productivity often decreases due to attacks by various diseases such as Sigatoka, Cordana, and Pestalotiopsis infections that can spread quickly. Early detection of these diseases is crucial to prevent greater losses. This study aims to develop a banana plant disease detection system based on digital image processing with the Support Vector Machine (SVM) algorithm. The research method includes the stages of banana leaf image acquisition, pre-processing using color segmentation, color and texture feature extraction, and disease type classification with the SVM algorithm. The test results show that the developed system is able to recognize banana leaf diseases with an accuracy of 97.8%, precision of 97%, and recall of 98%. These findings prove that the application of digital image processing and the SVM algorithm is effective in detecting banana plant diseases. This system is expected to be a fast, efficient, and accurate diagnostic tool for farmers to increase the productivity and quality of banana harvests.

Downloads

Download data is not yet available.

References

Ahohouendo, B. C., Adoukonou-Sagbadja, H., & Agbangla, C. 2020. Evaluation of banana leaf disease images for automated detection using deep learning. International Journal of Agricultural and Biological Engineering, 13(5), 45–53. https://doi.org/10.25165/j.ijabe.20201305.5681 .

Aryanta, M. S., Sari, C. A., & Rachmawanto, E. H. 2025. A Banana Disease Detection Using MobileNetV2 Model Based on Adam Optimizer. Journal of Applied Informatics and Computing, 9(4), 1207–1218.

Badan Pusat Statistik. (2023). Statistik tanaman buah-buahan Indonesia 2023. BPS RI.

Helmawati, S., & Utami, R. 2025. Analisis Citra Digital untuk Identifikasi Penyakit Daun Pisang Menggunakan CNN-SVM. Jurnal Teknologi dan Komputasi Cerdas, 6(2), 45–56.

Howard, A. G., et al. 2019. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(12), 2724–2735.

Jahin, M. A., Shahriar, S., Mridha, M. F., Hossen, M. J., & Dey, N. (2025). Soybean Disease Detection via Interpretable Hybrid CNN-GNN: Integrating MobileNetV2 and GraphSAGE with Cross-Modal Attention. arXiv preprint arXiv:2503.01284.

Jiménez, N., & Olivares-Sáenz, S., et al. (2025). Detection of Leaf Diseases in Banana Crops Using Deep Learning Techniques. AI, 6(3), 61. https://doi.org/10.3390/ai6030061

Karman, T., Saha, A., & Das, R. 2024. Deep Learning-Based Leaf Disease Classification Using CNN-SVM Hybrid Model. IEEE Access, 12, 98321–98335.

Kementerian Pertanian Republik Indonesia. (2022). Outlook komoditas pisang 2022. Pusat Data dan Sistem Informasi Pertanian (Pusdatin).

Kimunye, J., Mwangi, F., & Ouma, J. (2021). Assessment of banana leaf disease datasets for machine learning applications. Computers and Electronics in Agriculture, 183, 106046. https://doi.org/10.1016/j.compag.2021.106046

Kumar, A., Monga, H. P., Brahma, T., Kalra, S., & Sherif, N. (2025). Mobile-Friendly Deep Learning for Plant Disease Detection: A Lightweight CNN Benchmark Across 101 Classes of 33 Crops. arXiv preprint arXiv:2508.10817.

Ocimati, W., Elayabalan, S., & Safari, N. (2024). Leveraging Deep Learning for Early and Accurate Prediction of Banana Crop Diseases: A Classification and Risk Assessment Framework. International Journal of Computer Engineering in Research Trends, 11(4), 46-57.

Patel, M., & Patel, P. 2024. Deep Learning-Based Automated System for Banana Plant Disease Detection and Classification. International Journal of Next-Generation Computing, 15(2), 45–60.

Prasetyo, A., & Utami, E. (2024). Detection and Classification of Banana Leaf Diseases: Systematic Literature Review. Telematika.

Ridhovan, A., Suharso, A., & Rozikin, C. (2022). Disease Detection in Banana Leaf Plants using DenseNet and Inception Method. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(5), 710-718. https://doi.org/10.29207/resti.v6i5.4202

Salka, P., Aryanta, M., Sari, C. A., & Rachmawanto, E. H. (2025). Performance Evaluation of CNN-SVM Hybrid Model for Banana Leaf Disease Detection. Procedia Computer Science, 242, 221–230.

Sujatha, R., Chatterjee, J. M., & Easwaran, S. (2025). Machine Learning for Crop Disease Detection: A Review. IEEE Access, 13, 12547–12559.

Tanwar, S., Sharma, P., & Aanand, S. 2023. Smart Agriculture Using Deep Learning: A Review of Plant Disease Detection Techniques. IEEE Access, 11, 112451–112469.

Ugarte Fajardo, P., Rodríguez, M., & García, M. 2020. Early Detection of Black Sigatoka in Banana Leaves Using Hyperspectral Images. Applications in Plant Sciences, 8(11), e11373.

Downloads

Published

2025-12-20

How to Cite

Yuyun Yusnida Lase, Lampson Pindahaman Purba, Santi Prayudani, Arif Ridho Lubis, & Hikmah Adwin Adam. (2025). Analisis Deteksi Penyakit Daun Pisang Menggunakan Ekstraksi Fitur CNN (MobileNetV2) dan Klasifikasi SVM . INSOLOGI: Jurnal Sains Dan Teknologi, 4(6), 1569–1578. https://doi.org/10.55123/insologi.v4i6.6590