Analisis Deteksi Penyakit Daun Pisang Menggunakan Ekstraksi Fitur CNN (MobileNetV2) dan Klasifikasi SVM
DOI:
https://doi.org/10.55123/insologi.v4i6.6590Keywords:
Disease Detection, Banana Plants, Image Processing, Support Vector Machine, ClassificationAbstract
Banana plants (Musa spp.) are one of the leading horticultural commodities in Indonesia that have high economic value and play an important role in national food security. However, banana productivity often decreases due to attacks by various diseases such as Sigatoka, Cordana, and Pestalotiopsis infections that can spread quickly. Early detection of these diseases is crucial to prevent greater losses. This study aims to develop a banana plant disease detection system based on digital image processing with the Support Vector Machine (SVM) algorithm. The research method includes the stages of banana leaf image acquisition, pre-processing using color segmentation, color and texture feature extraction, and disease type classification with the SVM algorithm. The test results show that the developed system is able to recognize banana leaf diseases with an accuracy of 97.8%, precision of 97%, and recall of 98%. These findings prove that the application of digital image processing and the SVM algorithm is effective in detecting banana plant diseases. This system is expected to be a fast, efficient, and accurate diagnostic tool for farmers to increase the productivity and quality of banana harvests.
Downloads
References
Ahohouendo, B. C., Adoukonou-Sagbadja, H., & Agbangla, C. 2020. Evaluation of banana leaf disease images for automated detection using deep learning. International Journal of Agricultural and Biological Engineering, 13(5), 45–53. https://doi.org/10.25165/j.ijabe.20201305.5681 .
Aryanta, M. S., Sari, C. A., & Rachmawanto, E. H. 2025. A Banana Disease Detection Using MobileNetV2 Model Based on Adam Optimizer. Journal of Applied Informatics and Computing, 9(4), 1207–1218.
Badan Pusat Statistik. (2023). Statistik tanaman buah-buahan Indonesia 2023. BPS RI.
Helmawati, S., & Utami, R. 2025. Analisis Citra Digital untuk Identifikasi Penyakit Daun Pisang Menggunakan CNN-SVM. Jurnal Teknologi dan Komputasi Cerdas, 6(2), 45–56.
Howard, A. G., et al. 2019. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(12), 2724–2735.
Jahin, M. A., Shahriar, S., Mridha, M. F., Hossen, M. J., & Dey, N. (2025). Soybean Disease Detection via Interpretable Hybrid CNN-GNN: Integrating MobileNetV2 and GraphSAGE with Cross-Modal Attention. arXiv preprint arXiv:2503.01284.
Jiménez, N., & Olivares-Sáenz, S., et al. (2025). Detection of Leaf Diseases in Banana Crops Using Deep Learning Techniques. AI, 6(3), 61. https://doi.org/10.3390/ai6030061
Karman, T., Saha, A., & Das, R. 2024. Deep Learning-Based Leaf Disease Classification Using CNN-SVM Hybrid Model. IEEE Access, 12, 98321–98335.
Kementerian Pertanian Republik Indonesia. (2022). Outlook komoditas pisang 2022. Pusat Data dan Sistem Informasi Pertanian (Pusdatin).
Kimunye, J., Mwangi, F., & Ouma, J. (2021). Assessment of banana leaf disease datasets for machine learning applications. Computers and Electronics in Agriculture, 183, 106046. https://doi.org/10.1016/j.compag.2021.106046
Kumar, A., Monga, H. P., Brahma, T., Kalra, S., & Sherif, N. (2025). Mobile-Friendly Deep Learning for Plant Disease Detection: A Lightweight CNN Benchmark Across 101 Classes of 33 Crops. arXiv preprint arXiv:2508.10817.
Ocimati, W., Elayabalan, S., & Safari, N. (2024). Leveraging Deep Learning for Early and Accurate Prediction of Banana Crop Diseases: A Classification and Risk Assessment Framework. International Journal of Computer Engineering in Research Trends, 11(4), 46-57.
Patel, M., & Patel, P. 2024. Deep Learning-Based Automated System for Banana Plant Disease Detection and Classification. International Journal of Next-Generation Computing, 15(2), 45–60.
Prasetyo, A., & Utami, E. (2024). Detection and Classification of Banana Leaf Diseases: Systematic Literature Review. Telematika.
Ridhovan, A., Suharso, A., & Rozikin, C. (2022). Disease Detection in Banana Leaf Plants using DenseNet and Inception Method. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(5), 710-718. https://doi.org/10.29207/resti.v6i5.4202
Salka, P., Aryanta, M., Sari, C. A., & Rachmawanto, E. H. (2025). Performance Evaluation of CNN-SVM Hybrid Model for Banana Leaf Disease Detection. Procedia Computer Science, 242, 221–230.
Sujatha, R., Chatterjee, J. M., & Easwaran, S. (2025). Machine Learning for Crop Disease Detection: A Review. IEEE Access, 13, 12547–12559.
Tanwar, S., Sharma, P., & Aanand, S. 2023. Smart Agriculture Using Deep Learning: A Review of Plant Disease Detection Techniques. IEEE Access, 11, 112451–112469.
Ugarte Fajardo, P., Rodríguez, M., & García, M. 2020. Early Detection of Black Sigatoka in Banana Leaves Using Hyperspectral Images. Applications in Plant Sciences, 8(11), e11373.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yuyun Yusnida Lase, Lampson Pindahaman Purba, Santi Prayudani, Arif Ridho Lubis, Hikmah Adwin Adam

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak cipta pada setiap artikel adalah milik penulis.
Penulis mengakui bahwa INSOLOGI (Jurnal Sains dan Teknologi) sebagai publisher yang mempublikasikan pertama kali dengan lisensi Creative Commons Attribution 4.0 International License.
Penulis dapat memasukan tulisan secara terpisah, mengatur distribusi non-ekskulif dari naskah yang telah terbit di jurnal ini kedalam versi yang lain, seperti: dikirim ke respository institusi penulis, publikasi kedalam buku, dan lain-lain. Dengan mengakui bahwa naskah telah terbit pertama kali pada INSOLOGI (Jurnal Sains dan Teknologi).
























