Model Data Mining untuk Penetapan Plafon Kredit dengan Algoritma C4.5

Authors

  • Frans Mikael Sinaga Universitas Pelita Harapan
  • Jefri Junifer Pangaribuan Universitas Bina Nusantara
  • Aulia Rizky Muhammad Hendrik Noor Asegaff Universitas Islam Kalimantan Muhammad Arsyad Al Banjari Banjarmasin
  • Wenripin Chandra Universitas Pelita Harapan
  • Riche Riche Universitas Mikroskil

DOI:

https://doi.org/10.55123/insologi.v4i6.6656

Keywords:

Data Mining, Decision Tree, C4.5 Algorithm, Credit Limit, Risk Management

Abstract

Manual credit limit determination in distributor companies is often subjective and inconsistent, increasing the risk of bad debts. This research aims to design an objective data mining model to support customer credit limit decisions at CV. XYZ. The method used is the Decision Tree with the C4.5 algorithm, applied to 66 historical records of customer payment data. Data analysis was performed by calculating Entropy and Information Gain values to build the decision tree, which was then validated using RapidMiner Studio software. The research successfully built a valid and consistent classification model. The "Piutang" (receivables/transaction volume per invoice) attribute was identified as the main determinant (root node), followed by the "Pembayaran" (payment history) attribute as a branch node. This model generates three interpretable decision rules, including the discovery of a risky pattern where high-volume customers with poor payment histories are associated with large credit limits. The proposed model can be implemented as a decision support tool to standardize credit policies, reduce subjectivity, and minimize the company's financial risk.

Downloads

Download data is not yet available.

References

Barus, O. P., Phan, N., Widjaja, A. E., Pangaribuan, J. J., & Romindo, R. (2024). Heart Disease Classification Using Decision Trees. 2024 3rd International Conference on Creative Communication and Innovative Technology, ICCIT 2024. https://doi.org/10.1109/ICCIT62134.2024.10701238

Eldo, H., Ayuliana, A., Suryadi, D., Chrisnawati, G., & Judijanto, L. (2024). Penggunaan Algoritma Support Vector Machine (SVM) Untuk Deteksi Penipuan pada Transaksi Online. Jurnal Minfo Polgan, 13(2), 1627–1632. https://doi.org/10.33395/jmp.v13i2.14186

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. In J. Han, M. Kamber, & J. Pei (Eds.), Data Mining (Third Edition) (Third Edition). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00001-0

Harto, B., Rukmana, A. Y., Subekti, R., Tahir, R., Waty, E., Situru, A. C., & Sepriano. (2023). Transformasi Bisnis di Era Digital: Teknologi Informasi dalam Mendukung Transformasi Bisnis di Era Digital (Efitra, Ed.; Cetakan Pertama). Sonpedia Publishing Indonesia.

Ibrahim, N. H., & Khikmah, L. (2024). Perbandingan Metode Algoritma C4.5, Naïve Bayes, dan Logistic Regression untuk Penentuan Kelayakan Penerima Kredit. Teknologi, 14(2), 85–93. https://doi.org/10.26594/teknologi.v14i2.4650

Indriyani, I., Wiranata, I. P. B., & Hiu, S. (2024). Strategi Peningkatan Efisiensi Operasional UMKM di Era Digital: Pendekatan Kualitatif dengan Business Intelligence dalam Implementasi E-Commerce. INFORMATICS FOR EDUCATORS AND PROFESSIONAL : Journal of Informatics, 9(1), 23. https://doi.org/10.51211/itbi.v9i1.2760

Nofitri, R., & Irawati, N. (2019). Analisis Data Hasil Keuntungan Menggunakan Software RapidMiner. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 5(2), 199–204. https://doi.org/10.33330/jurteksi.v5i2.365

Pangaribuan, J. J., & Putra, A. (2024). Blood Donation Classification with Decision Tree Method using C4.5 Algorithm. International Journal of Multidisciplinary Approach Research and Science, 2(03), 1248–1259. https://doi.org/10.59653/ijmars.v2i03.961

Putri, M. S. E., & Marsono, M. (2025). Analisis Peran Perantara terhadap Efisiensi Distribusi Tebu. Lokawati : Jurnal Penelitian Manajemen Dan Inovasi Riset, 3(4), 226–237. https://doi.org/10.61132/lokawati.v3i4.1974

Resti, Y., Aryanto, R., Yahdin, S., & Kresnawati, E. S. (2023). Rain Event Prediction Performance Using Decision Tree Method. AIP Conference Proceedings, 2689(1), 120006. https://doi.org/10.1063/5.0117434

Rusyana, N. R., Renaldi, F., & Destiani, D. (2023). Prediction Analysis of Four Disease Risk Using Decision Tree C4.5. ICCoSITE 2023 - International Conference on Computer Science, Information Technology and Engineering: Digital Transformation Strategy in Facing the VUCA and TUNA Era, 90–94. https://doi.org/10.1109/ICCoSITE57641.2023.10127710

Saputra, Z. N., & Fatah, Z. (2025). Pengunaan Data Mining Untuk Mengidentifikasi Pelanggan Beresiko Tinggi Dalam Penjualan Mengunakan Algoritma Decision Tree C4.5. JUSIFOR : Jurnal Sistem Informasi Dan Informatika, 4(1), 68–74. https://doi.org/10.70609/jusifor.v4i1.5942

Sibarani, H. A., Sarkis, I. M., & Simanullang, H. G. (2023). Penerapan Algoritma C4.5 Dalam Menentukan Pemberian Pinjaman Bagi Nasabah Di CU.Mitra Kasih Smart. Methosisfo: Jurnal Ilmiah Sistem Informasi, 3(1), 137–142. http://ojs.fikom-methodist.net/index.php/methosisfo

Sudarsono, B. G., Leo, M. I., Santoso, A., & Hendrawan, F. (2021). Analisis Data Mining Data Netflix Menggunakan Aplikasi RapidMiner. JBASE - Journal of Business and Audit Information Systems, 4(1). https://doi.org/10.30813/jbase.v4i1.2729

Downloads

Published

2025-12-20

How to Cite

Frans Mikael Sinaga, Jefri Junifer Pangaribuan, Noor Asegaff, A. R. M. H., Chandra, W., & Riche, R. (2025). Model Data Mining untuk Penetapan Plafon Kredit dengan Algoritma C4.5. INSOLOGI: Jurnal Sains Dan Teknologi, 4(6), 1512–1524. https://doi.org/10.55123/insologi.v4i6.6656