Model Data Mining untuk Penetapan Plafon Kredit dengan Algoritma C4.5
DOI:
https://doi.org/10.55123/insologi.v4i6.6656Keywords:
Data Mining, Decision Tree, C4.5 Algorithm, Credit Limit, Risk ManagementAbstract
Manual credit limit determination in distributor companies is often subjective and inconsistent, increasing the risk of bad debts. This research aims to design an objective data mining model to support customer credit limit decisions at CV. XYZ. The method used is the Decision Tree with the C4.5 algorithm, applied to 66 historical records of customer payment data. Data analysis was performed by calculating Entropy and Information Gain values to build the decision tree, which was then validated using RapidMiner Studio software. The research successfully built a valid and consistent classification model. The "Piutang" (receivables/transaction volume per invoice) attribute was identified as the main determinant (root node), followed by the "Pembayaran" (payment history) attribute as a branch node. This model generates three interpretable decision rules, including the discovery of a risky pattern where high-volume customers with poor payment histories are associated with large credit limits. The proposed model can be implemented as a decision support tool to standardize credit policies, reduce subjectivity, and minimize the company's financial risk.
Downloads
References
Barus, O. P., Phan, N., Widjaja, A. E., Pangaribuan, J. J., & Romindo, R. (2024). Heart Disease Classification Using Decision Trees. 2024 3rd International Conference on Creative Communication and Innovative Technology, ICCIT 2024. https://doi.org/10.1109/ICCIT62134.2024.10701238
Eldo, H., Ayuliana, A., Suryadi, D., Chrisnawati, G., & Judijanto, L. (2024). Penggunaan Algoritma Support Vector Machine (SVM) Untuk Deteksi Penipuan pada Transaksi Online. Jurnal Minfo Polgan, 13(2), 1627–1632. https://doi.org/10.33395/jmp.v13i2.14186
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. In J. Han, M. Kamber, & J. Pei (Eds.), Data Mining (Third Edition) (Third Edition). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00001-0
Harto, B., Rukmana, A. Y., Subekti, R., Tahir, R., Waty, E., Situru, A. C., & Sepriano. (2023). Transformasi Bisnis di Era Digital: Teknologi Informasi dalam Mendukung Transformasi Bisnis di Era Digital (Efitra, Ed.; Cetakan Pertama). Sonpedia Publishing Indonesia.
Ibrahim, N. H., & Khikmah, L. (2024). Perbandingan Metode Algoritma C4.5, Naïve Bayes, dan Logistic Regression untuk Penentuan Kelayakan Penerima Kredit. Teknologi, 14(2), 85–93. https://doi.org/10.26594/teknologi.v14i2.4650
Indriyani, I., Wiranata, I. P. B., & Hiu, S. (2024). Strategi Peningkatan Efisiensi Operasional UMKM di Era Digital: Pendekatan Kualitatif dengan Business Intelligence dalam Implementasi E-Commerce. INFORMATICS FOR EDUCATORS AND PROFESSIONAL : Journal of Informatics, 9(1), 23. https://doi.org/10.51211/itbi.v9i1.2760
Nofitri, R., & Irawati, N. (2019). Analisis Data Hasil Keuntungan Menggunakan Software RapidMiner. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 5(2), 199–204. https://doi.org/10.33330/jurteksi.v5i2.365
Pangaribuan, J. J., & Putra, A. (2024). Blood Donation Classification with Decision Tree Method using C4.5 Algorithm. International Journal of Multidisciplinary Approach Research and Science, 2(03), 1248–1259. https://doi.org/10.59653/ijmars.v2i03.961
Putri, M. S. E., & Marsono, M. (2025). Analisis Peran Perantara terhadap Efisiensi Distribusi Tebu. Lokawati : Jurnal Penelitian Manajemen Dan Inovasi Riset, 3(4), 226–237. https://doi.org/10.61132/lokawati.v3i4.1974
Resti, Y., Aryanto, R., Yahdin, S., & Kresnawati, E. S. (2023). Rain Event Prediction Performance Using Decision Tree Method. AIP Conference Proceedings, 2689(1), 120006. https://doi.org/10.1063/5.0117434
Rusyana, N. R., Renaldi, F., & Destiani, D. (2023). Prediction Analysis of Four Disease Risk Using Decision Tree C4.5. ICCoSITE 2023 - International Conference on Computer Science, Information Technology and Engineering: Digital Transformation Strategy in Facing the VUCA and TUNA Era, 90–94. https://doi.org/10.1109/ICCoSITE57641.2023.10127710
Saputra, Z. N., & Fatah, Z. (2025). Pengunaan Data Mining Untuk Mengidentifikasi Pelanggan Beresiko Tinggi Dalam Penjualan Mengunakan Algoritma Decision Tree C4.5. JUSIFOR : Jurnal Sistem Informasi Dan Informatika, 4(1), 68–74. https://doi.org/10.70609/jusifor.v4i1.5942
Sibarani, H. A., Sarkis, I. M., & Simanullang, H. G. (2023). Penerapan Algoritma C4.5 Dalam Menentukan Pemberian Pinjaman Bagi Nasabah Di CU.Mitra Kasih Smart. Methosisfo: Jurnal Ilmiah Sistem Informasi, 3(1), 137–142. http://ojs.fikom-methodist.net/index.php/methosisfo
Sudarsono, B. G., Leo, M. I., Santoso, A., & Hendrawan, F. (2021). Analisis Data Mining Data Netflix Menggunakan Aplikasi RapidMiner. JBASE - Journal of Business and Audit Information Systems, 4(1). https://doi.org/10.30813/jbase.v4i1.2729
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Frans Mikael Sinaga, Jefri Junifer Pangaribuan, Aulia Rizky Muhammad Hendrik Noor Asegaff, Wenripin Chandra, Riche Riche

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak cipta pada setiap artikel adalah milik penulis.
Penulis mengakui bahwa INSOLOGI (Jurnal Sains dan Teknologi) sebagai publisher yang mempublikasikan pertama kali dengan lisensi Creative Commons Attribution 4.0 International License.
Penulis dapat memasukan tulisan secara terpisah, mengatur distribusi non-ekskulif dari naskah yang telah terbit di jurnal ini kedalam versi yang lain, seperti: dikirim ke respository institusi penulis, publikasi kedalam buku, dan lain-lain. Dengan mengakui bahwa naskah telah terbit pertama kali pada INSOLOGI (Jurnal Sains dan Teknologi).
























