Evaluation of Ambient PM2.5 Levels in The Campus Area Using Information from A Low-Cost Sensor Device
DOI:
https://doi.org/10.55123/insologi.v4i6.6911Keywords:
Air Pollution, Low-Cost Sensor, PM2.5, Campus AreaAbstract
This study assesses ambient PM2.5 concentrations alongside temperature and humidity at two campus sites, UPN and UGM, utilising a Low-Cost Sensor (LCS) IoT-based device. LCS-IoT provides a cost-effective and sustainable solution for air quality monitoring, addressing the shortcomings of costly traditional sensors. Data indicates considerable daily fluctuations in PM2.5 concentrations; UPN documented morning peaks surpassing 100 µg/m³ at approximately 08:00 AM, but UGM exhibited lower peaks, remaining below 45 µg/m³ during the same timeframe. This discrepancy is associated with the positioning of UGM's sensors within the campus's Green Open Space (RTH)/vegetation zone, whereas UPN is situated adjacent to a bustling roadway. This observation highlights the effectiveness of green spaces and vegetation in reducing PM2.5 pollution. The temperature trend at both analogue locations peaked at 31-33°C during the day. Relative humidity exhibits an inverse correlation with temperature, peaking at 80-90% during the early morning and declining to a low of 59-70% during the day. The research findings underscore the significance of air quality monitoring within the campus environment and the necessity for specific mitigation strategies to safeguard the health of the academic community. Extended research with prolonged measuring periods is recommended for a more thorough comprehension.
Downloads
References
Anwar, A., Ullah, I., Younis, M. Z., & Flahault, A. (2021). Impact of Air Pollution (PM2.5) on Child Mortality: Evidence From Sixteen Asian Countries. International Journal of Environmental Research and Public Health, 18(12), 6375. https://doi.org/10.3390/ijerph18126375
Blessy, A., John Paul, J., Gautam, S., Jasmin Shany, V., & Sreenath, M. (2023). IoT-Based Air Quality Monitoring in Hair Salons: Screening of Hazardous Air Pollutants Based on Personal Exposure and Health Risk Assessment. Water, Air, & Soil Pollution, 234(6), 336. https://doi.org/10.1007/s11270-023-06350-4
Buraerah, Muh. F., Patandjengi, B., Suryani, S., Hamzah, A., & Demmalino, E. B. (2023). The effect of vegetation in reducing air pollution in an urban environment: A review. IOP Conference Series: Earth and Environmental Science, 1253(1), 012105. https://doi.org/10.1088/1755-1315/1253/1/012105
Chi, K. H., Huang, Y.-T., Nguyen, H. M., Tran, T. T.-H., Chantara, S., & Ngo, T. H. (2022). Characteristics and health impacts of PM2.5-bound PCDD/Fs in three Asian countries. Environment International, 167, 107441. https://doi.org/10.1016/j.envint.2022.107441
Czermański, E., Oniszczuk-Jastrząbek, A., Laskowicz, T., Badyda, A., Reis, L. A., & Tzanis, C. G. (2024). Editorial: Air Pollution as a Risk Factor Affecting Human Health and Economic Costs. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1421547
Dahari, N., Muda, K., Latif, M. T., & Hussein, N. (2021). Studies of Atmospheric PM2.5 and its Inorganic Water Soluble Ions and Trace Elements around Southeast Asia: A Review. Asia-Pacific Journal of Atmospheric Sciences, 57(2), 361–385. https://doi.org/10.1007/s13143-019-00132-x
Damor, P., Pattan, A., & Vijayakumar, A. (2021). Effect of Air Pollution on Health of Community People–A Descriptive Approach. Indian Journal of Forensic Medicine & Toxicology, 15(4), 2159–2163. https://doi.org/10.37506/ijfmt.v15i4.17027
Giles, L. V., Barn, P., Künzli, N., Romieu, I., Mittleman, M. A., Eeden, S. v., Allen, R. W., Carlsten, C., Stieb, D., Noonan, C., Smargiassi, A., Kaufman, J. D., Hajat, S., Kosatsky, T., & Bräuer, M. (2011). From Good Intentions to Proven Interventions: Effectiveness of Actions to Reduce the Health Impacts of Air Pollution. Environmental Health Perspectives, 119(1), 29–36. https://doi.org/10.1289/ehp.1002246
Haghbayan, S., Momeni, M., & Tashayo, B. (2025). Enhancing PM2.5 modeling with reinforcement learning: Dynamic ensembling of multi-graph attention networks and deep recurrent models. International Journal of Environmental Science and Technology, 22(9), 7797–7814. https://doi.org/10.1007/s13762-024-06317-w
Huda, R. K., Kumar, P., Gupta, R., Sharma, A. K., Toteja, G. S., & Babu, B. V. (2024). Air Quality Monitoring Using Low-Cost Sensors in Urban Areas of Jodhpur, Rajasthan. International Journal of Environmental Research and Public Health, 21(5), 623. https://doi.org/10.3390/ijerph21050623
Janhäll, S. (2015). Review on urban vegetation and particle air pollution – Deposition and dispersion. Atmospheric Environment, 105, 130–137. https://doi.org/10.1016/j.atmosenv.2015.01.052
Jiang, W., Li, W., & Chen, Y. (2024). Air Pollution, Public Health Expenditure, and Physical Health: Evidence From China. Environmental Quality Management, 34(1). https://doi.org/10.1002/tqem.22185
Lung, S.-C. C., Thi Hien, T., Cambaliza, M. O. L., Hlaing, O. M. T., Oanh, N. T. K., Latif, M. T., Lestari, P., Salam, A., Lee, S.-Y., Wang, W.-C. V., Tsou, M.-C. M., Cong-Thanh, T., Cruz, M. T., Tantrakarnapa, K., Othman, M., Roy, S., Dang, T. N., & Agustian, D. (2022). Research Priorities of Applying Low-Cost PM2.5 Sensors in Southeast Asian Countries. International Journal of Environmental Research and Public Health, 19(3), 1522. https://doi.org/10.3390/ijerph19031522
Luo, Z., Huang, F., & Liu, H. (2020). PM2.5 concentration estimation using convolutional neural network and gradient boosting machine. Journal of Environmental Sciences, 98, 85–93. https://doi.org/10.1016/j.jes.2020.04.042
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health, 8, 14. https://doi.org/10.3389/fpubh.2020.00014
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., … Zhou, C. (2013). Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 13(4), 1853–1877. https://doi.org/10.5194/acp-13-1853-2013
Prayoga, G. A., Husni, E., & Darmakusuma, R. (2025). A Wireless Sensor Network LCS-AQMS: Design, Instrumentation, Calibration Modelling, and Data Analysis. IEEE Access, 13, 144362–144384. https://doi.org/10.1109/ACCESS.2025.3598855
Santoso, D. H., Santosa, S. J., & Sekaranom, A. B. (2024a). Analysis and Trends Research Publications on Air Quality (PM 2.5) Management Strategies. IOP Conference Series: Earth and Environmental Science, 1339(1), 012042. https://doi.org/10.1088/1755-1315/1339/1/012042
Santoso, D. H., Santosa, S. J., & Sekaranom, A. B. (2024b). Bibliometric Analysis of Research Trends on Utilisation of Low-Cost Sensor (LCS) and Internet of Things (IoT) for PM2.5 Air Pollution Monitoring. 8.
Santoso, D. H., Santosa, S. J., & Sekaranom, A. B. (2025). Low-Cost Sensor Based on Internet of Things for PM₂¸₅ Air Quality Monitoring. Indonesian Journal of Geography, 57(2). https://doi.org/10.22146/ijg.104159
Sherwood, S. C., Ingram, W., Tsushima, Y., Satoh, M., Roberts, M., Vidale, P. L., & O’Gorman, P. A. (2010). Relative humidity changes in a warmer climate. Journal of Geophysical Research: Atmospheres, 115(D9), 2009JD012585. https://doi.org/10.1029/2009JD012585
Tian, Z., & Gai, M. (2023). A novel air pollution prediction system based on data processing, fuzzy theory, and multi-strategy improved optimizer. Environmental Science and Pollution Research, 30(21), 59719–59736. https://doi.org/10.1007/s11356-023-26578-1
Wang, Q., Kwan, M.-P., Zhou, K., Fan, J., Wang, Y., & Zhan, D. (2019). The impacts of urbanization on fine particulate matter (PM2.5) concentrations: Empirical evidence from 135 countries worldwide. Environmental Pollution, 247, 989–998. https://doi.org/10.1016/j.envpol.2019.01.086
Zhai, H., Yao, J., Wang, G., & Tang, X. (2022). Study of the Effect of Vegetation on Reducing Atmospheric Pollution Particles. Remote Sensing, 14(5), 1255. https://doi.org/10.3390/rs14051255
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dian Hudawan Santoso, Ahmad Yuda Hermawan, Bryan Tegar Mahardika, Ichlasul Kevin Hilmi, Mufid Rona Nuansa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak cipta pada setiap artikel adalah milik penulis.
Penulis mengakui bahwa INSOLOGI (Jurnal Sains dan Teknologi) sebagai publisher yang mempublikasikan pertama kali dengan lisensi Creative Commons Attribution 4.0 International License.
Penulis dapat memasukan tulisan secara terpisah, mengatur distribusi non-ekskulif dari naskah yang telah terbit di jurnal ini kedalam versi yang lain, seperti: dikirim ke respository institusi penulis, publikasi kedalam buku, dan lain-lain. Dengan mengakui bahwa naskah telah terbit pertama kali pada INSOLOGI (Jurnal Sains dan Teknologi).
























