Evaluasi Robustness dan Deployment Readiness Model XGBoost untuk Prediksi Risiko Gagal Jantung di Indonesia

Authors

  • Triandes Sinaga Universitas Pelita Harapan
  • Ayumi Ayumi Universitas Pelita Harapan
  • Jefri Junifer Pangaribuan Universitas Bina Nusantara

DOI:

https://doi.org/10.55123/insologi.v4i6.7087

Keywords:

Machine Learning, XGBoost, Heart Failure, Risk Prediction, Digital Health

Abstract

Cardiovascular diseases, particularly heart failure, remain a leading cause of mortality in Indonesia, affecting an estimated 2.78 million individuals. This study aims to develop a heart failure risk prediction model using the XGBoost algorithm and to evaluate its performance through a comparative validation approach across two datasets with distinct characteristics. The primary model was trained on a large-scale Indonesian population dataset (N = 158,355; 28 features) representing the complexity of real-world clinical data, while the UCI Heart Disease dataset (N = 918; 12 features) was used as a benchmark under more controlled conditions. Experimental results show that the Indonesian model achieved a testing accuracy of 73.50% with a very small training–testing performance gap of 0.53% and an AUC-ROC value of 0.814, indicating strong stability and generalization capability. In contrast, the model trained on the UCI dataset obtained a higher accuracy of 88.59% but exhibited moderate overfitting, reflected by a larger performance gap of 4.60%. Feature importance analysis consistently identified a history of heart disease, hypertension, and smoking behavior as the most influential predictors across both datasets. These findings highlight that model stability and generalization on real-world data are more critical than raw accuracy derived from small, idealized datasets when assessing the clinical deployment readiness of medical artificial intelligence systems in Indonesia.

Downloads

Download data is not yet available.

References

Ankit. (2025). Heart Attack Prediction in Indonesia. https://doi.org/10.34740/kaggle/dsv/10995709

Bragazzi, N. L., Zhong, W., Shu, J., Abu Much, A., Lotan, D., Grupper, A., Younis, A., & Dai, H. (2021). Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. European Journal of Preventive Cardiology, 28(15), 1682–1690. https://doi.org/10.1093/eurjpc/zwaa147

Chen, R., Zhang, S., Li, J., Guo, D., Zhang, W., Wang, X., Tian, D., Qu, Z., & Wang, X. (2023). A study on predicting the length of hospital stay for Chinese patients with ischemic stroke based on the XGBoost algorithm. BMC Medical Informatics and Decision Making, 23(1). https://doi.org/10.1186/s12911-023-02140-4

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785

Feng, M., Wang, X., Zhao, Z., Jiang, C., Xiong, J., & Zhang, N. (2024). Enhanced Heart Attack Prediction Using eXtreme Gradient Boosting. Journal of Theory and Practice of Engineering Science, 4(04), 9–16. https://doi.org/10.53469/jtpes.2024.04(04).02

Gündoğdu, S. (2023). Efficient prediction of early-stage diabetes using XGBoost classifier with random forest feature selection technique. Multimedia Tools and Applications, 82(22), 34163–34181. https://doi.org/10.1007/s11042-023-15165-8

Huang, Y., Li, W., Macheret, F., Gabriel, R. A., & Ohno-Machado, L. (2021). A tutorial on calibration measurements and calibration models for clinical prediction models. In Journal of the American Medical Informatics Association (Vol. 27, Issue 4, pp. 621–633). Oxford University Press. https://doi.org/10.1093/JAMIA/OCZ228

Jonayet Miah, Duc M Ca, Md Abu Sayed, Ehsanur Rashid Lipu, Fuad Mahmud, & S M Yasir Arafat. (2023). Improving Cardiovascular Disease Prediction Through Comparative Analysis of Machine Learning Models: A Case Study on Myocardial Infarction.

Kementerian Kesehatan RI. (2019). Laporan Riset Kesehatan Dasar (RISKESDAS) 2018.

Khamis, G. S. M., Mohammed, Z. M. S., Alanazi, S. M., Mahmoud, A. F. A., Abdalla, F. A., & Bkheet, S. A. (2024). Prediction of Myocardial Infarction Complications using Gradient Boosting. Engineering, Technology and Applied Science Research, 14(6), 18550–18556. https://doi.org/10.48084/etasr.9076

Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R., & Abel, E. D. (2021). Cardiac Energy Metabolism in Heart Failure. Circulation Research, 128(10), 1487–1513. https://doi.org/10.1161/CIRCRESAHA.121.318241

Moreno-Sánchez, P. A. (2023). Improvement of a prediction model for heart failure survival through explainable artificial intelligence. Frontiers in Cardiovascular Medicine, 10. https://doi.org/10.3389/fcvm.2023.1219586

Muntasir Nishat, M., Faisal, F., Jahan Ratul, I., Al-Monsur, A., Ar-Rafi, A. M., Nasrullah, S. M., Reza, M. T., & Khan, M. R. H. (2022). A Comprehensive Investigation of the Performances of Different Machine Learning Classifiers with SMOTE-ENN Oversampling Technique and Hyperparameter Optimization for Imbalanced Heart Failure Dataset. Scientific Programming, 2022. https://doi.org/10.1155/2022/3649406

Nandal, N., Goel, L., & TANWAR, R. (2022). Machine learning-based heart attack prediction: A symptomatic heart attack prediction method and exploratory analysis. F1000Research, 11, 1126. https://doi.org/10.12688/f1000research.123776.1

Qadri, A. M., Raza, A., Munir, K., & Almutairi, M. S. (2023). Effective Feature Engineering Technique for Heart Disease Prediction With Machine Learning. IEEE Access, 11, 56214–56224. https://doi.org/10.1109/ACCESS.2023.3281484

Rahman, H., & Agusman, R. (2024). MODEL PREDIKSI PENYAKIT JANTUNG MENGGUNKAN MACHINE LEARNING. In Tata Sutabri Jurnal Ilmiah Betrik (Vol. 15, Issue 03).

Rajliwall, N. S., Davey, R., & Chetty, G. (2018). Cardiovascular Risk Prediction Based on XGBoost. Proceedings - 2018 5th Asia-Pacific World Congress on Computer Science and Engineering, APWC on CSE 2018, 246–252. https://doi.org/10.1109/APWConCSE.2018.00047

Rizky Mubarok, M., Herteno, R., Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lambung Mangkurat Jalan Ahmad Yani Km, I., & Selatan, K. (2022). HYPER-PARAMETER TUNING PADA XGBOOST UNTUK PREDIKSI KEBERLANGSUNGAN HIDUP PASIEN GAGAL JANTUNG.

Savarese, G., Becher, P. M., Lund, L. H., Seferovic, P., Rosano, G. M. C., & Coats, A. J. S. (2022). Global burden of heart failure: a comprehensive and updated review of epidemiology. In Cardiovascular Research (Vol. 118, Issue 17, pp. 3272–3287). Oxford University Press. https://doi.org/10.1093/cvr/cvac013

Shahim, B., Kapelios, C. J., Savarese, G., & Lund, L. H. (2023). Global Public Health Burden of Heart Failure: An Updated Review. Cardiac Failure Review, 9. https://doi.org/10.15420/cfr.2023.05

Soni, T., Gupta, D., & Uppal, M. (2024). Employing XGBoost algorithm for accurate prediction of cardiovascular disease and its risk factors. Proceedings of IEEE AIC. https://doi.org/10.1109/aic61668.2024.10730877

Tarabanis, C., Kalampokis, E., Khalil, M., Alviar, C. L., Chinitz, L. A., & Jankelson, L. (2023). Explainable SHAP-XGBoost models for in-hospital mortality after myocardial infarction. Cardiovascular Digital Health Journal, 4(4), 126–132. https://doi.org/10.1016/j.cvdhj.2023.06.001

Wang, X., Zhu, T., Xia, M., Liu, Y., Wang, Y., Wang, X., Zhuang, L., Zhong, D., Zhu, J., He, H., Weng, S., Zhu, J., & Lai, D. (2022). Predicting the Prognosis of Patients in the Coronary Care Unit: A Novel Multi-Category Machine Learning Model Using XGBoost. Frontiers in Cardiovascular Medicine, 9. https://doi.org/10.3389/fcvm.2022.764629

Yasmin, F., Shah, S. M. I., Naeem, A., Shujauddin, S. M., Jabeen, A., Kazmi, S., Siddiqui, S. A., Kumar, P., Salman, S., Hassan, S. A., Dasari, C., Choudhry, A. S., Mustafa, A., Chawla, S., & Lak, H. M. (2021). Artificial intelligence in the diagnosis and detection of heart failure: the past, present, and future. In Reviews in Cardiovascular Medicine (Vol. 22, Issue 4, pp. 1095–1113). IMR Press Limited. https://doi.org/10.31083/j.rcm2204121

Downloads

Published

2025-12-20

How to Cite

Triandes Sinaga, Ayumi, A., & Pangaribuan , J. J. . (2025). Evaluasi Robustness dan Deployment Readiness Model XGBoost untuk Prediksi Risiko Gagal Jantung di Indonesia . INSOLOGI: Jurnal Sains Dan Teknologi, 4(6), 1834–1848. https://doi.org/10.55123/insologi.v4i6.7087