Integrasi Filsafat Ilmu dan Etika dalam Pengembangan Model Analisis Sentimen Berbasis IndoBERT pada Wacana #IndonesiaEmas2045
DOI:
https://doi.org/10.55123/insologi.v5i1.7231Keywords:
Philosophy of Science, IndoBERT, Sentiment Analysis, Social Media, Indonesia Emas 2045Abstract
The philosophy of science positions scientific knowledge as the result of a systematic and logical thought process grounded in clear ontological, epistemological, and axiological foundations. In the context of computer science, the philosophical approach serves as an essential framework to ensure that the development of artificial intelligence-based models is not merely technical in nature but also founded on rational reasoning and ethical responsibility. This study integrates the paradigm of the philosophy of science with the development of an IndoBERT-based sentiment analysis model for social media comments under the hashtag #IndonesiaEmas2045. Through ontology, this research establishes digital social interactions as a legitimate object of scientific inquiry; through epistemology, it applies computational logic and machine learning–based scientific methods to interpret public opinion; and through axiology, it utilizes the analytical results to understand societal perceptions and support data-driven public policy. The model testing results demonstrate high performance with an accuracy of 96.5%, validating the coherence between a philosophical scientific approach and an empirical computational methodology. Therefore, this study not only contributes to the advancement of Indonesian-language sentiment analysis technology but also strengthens the scientific dimension of computer science within the framework of the philosophy of science.
Downloads
References
A. Rafiq. (2019). Dampak media sosial terhadap perubahan sosial suatu masyarakat. Fidei: Jurnal Teologi Sistematika dan Praktika, 1(2), 270–283. https://doi.org/10.34081/270033
Antons, D., & Breidbach, C. F. (2021). Big data, big insights? Advancing service innovation and design with machine learning. Journal of Service Research, 24(1), 1–17. https://doi.org/10.1177/1094670520908581
Ardiansyah, M. R. N., Ariesta, D. R., Hariroh, S. Q., Antika, S. A., Maharani, S. D., & Nafi’ah, B. A. (2024). Analisis Voting Behavior Gen-Z pada Pemilu 2024 dan Pengaruh Terwujudnya Visi Indonesia Emas 2045: Studi Kasus Mahasiswa Kota Surabaya. Arus Jurnal Sosial dan Humaniora, 4(2), 390–408. https://doi.org/10.57250/ajsh.v4i2.401
Azizah, L., Gunawan, J., & Sinansari, P. (2021). Pengaruh Pemasaran Media Sosial TikTok terhadap Kesadaran Merek dan Minat Beli Produk Kosmetik di Indonesia. Jurnal Teknik ITS, 10(2). https://doi.org/10.12962/j23373539.v10i2.73923
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT), 610–623. https://doi.org/10.1145/3442188.3445922
Birhane, A. (2021). Algorithmic injustice: A relational ethics approach. Patterns, 2(2), Article 100205. https://doi.org/10.1016/j.patter.2021.100205
Bommasani, R., Hudson, D. A., Adeli, E., et al. (2021). On the opportunities and risks of foundation models. Stanford Center for Research on Foundation Models Report.
Budiman, I. F. (2024). Peran Pancasila sebagai Ideologi Negara dalam Mewujudkan Indonesia Emas 2045. Cendekia Jurnal Pendidikan dan Pengajaran, 2(1), 47–54.
Cambria, E., Li, Y., Xing, F. Z., Poria, S., & Kwok, K. (2020). Sentiment analysis is a big suitcase. IEEE Intelligent Systems, 35(2), 74–80. https://doi.org/10.1109/MIS.2020.2970391
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of NAACL-HLT 2019, 4171–4186.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), 4171–4186. https://doi.org/10.18653/v1/N19-1423
Floridi, L., Cowls, J., Beltrametti, M., et al. (2018). AI4People—An ethical framework for a good AI society. Minds and Machines, 28, 689–707. https://doi.org/10.1007/s11023-018-9482-5
Hovy, D., & Spruit, S. L. (2016). The social impact of natural language processing. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/P16-2096
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1, 389–399. https://doi.org/10.1038/s42256-019-0088-2
Koto, F., Rahimi, A., Lau, J. H., & Baldwin, T. (2020). IndoBERT: A pre-trained language model for Indonesian. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). https://doi.org/10.18653/v1/2020.emnlp-main.66
Liu, B. (2020). Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge University Press.
Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 7(2). https://doi.org/10.1177/2053951716679679
Nasution, M. K. M. (2023). Filsafat Sains Komputer. Filsafat Ilmu, 2. Universitas Sumatera Utara. https://doi.org/10.13140/RG.2.2.11163.03362
Nasution, M. K. M. (2024). Logika: Suatu Pengantar. Matematika Diskrit, 1(1), 1–7. Universitas Sumatera Utara. https://doi.org/10.13140/RG.2.2.20013.33761
Nasution, M. K. M. (2025). Filsafat Keilmuan. Program Doktor Sains Komputer, Universitas Sumatera Utara. https://doi.org/10.13140/RG.2.2.29476.76168
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you? Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). https://doi.org/10.1145/2939672.2939778
Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in BERTology: What we know about how BERT works. Transactions of the Association for Computational Linguistics, 8, 842–866. https://doi.org/10.1162/tacl_a_00349
Ruder, S., Peters, M. E., Swayamdipta, S., & Wolf, T. (2019). Transfer learning in natural language processing. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT). https://doi.org/10.18653/v1/N19-5004
Sudarma, U. (2022). Pendidikan karakter dalam mewujudkan sumber daya manusia berdaya saing menuju Indonesia Emas 2045. Sharia: Jurnal Kajian Islam, 1(1), 37–55. https://doi.org/10.59757/sharia.v1i1.4
Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 5998–6008.
Wilie, B., Vincentio, K., Winata, G. I., Cahyawijaya, S., Li, X., Lim, Z. Y., Soleman, S., Mahendra, R., Fung, P., Bahar, S., & Purwarianti, A. (2020). IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding.
Wilie, B., Vincentio, K., Winata, G. I., Cahyawijaya, S., Li, X., Lim, Z. Y., Fung, P., & Purwarianti, A. (2020). IndoNLU: Benchmark and resources for evaluating Indonesian natural language understanding. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). https://doi.org/10.18653/v1/2020.emnlp-main.80
Zeng, Z., Zhang, M., Zhang, Y., & Zhang, L. (2022). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 12(2). https://doi.org/10.1002/widm.1415
Zhang, L., Wang, S., & Liu, B. (2023). Deep learning for sentiment analysis: A survey of recent trends. IEEE Computational Intelligence Magazine, 18(1), 14–25. https://doi.org/10.1109/MCI.2022.3221578
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Romindo Romindo, Mahyuddin K. M. Nasution

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak cipta pada setiap artikel adalah milik penulis.
Penulis mengakui bahwa INSOLOGI (Jurnal Sains dan Teknologi) sebagai publisher yang mempublikasikan pertama kali dengan lisensi Creative Commons Attribution 4.0 International License.
Penulis dapat memasukan tulisan secara terpisah, mengatur distribusi non-ekskulif dari naskah yang telah terbit di jurnal ini kedalam versi yang lain, seperti: dikirim ke respository institusi penulis, publikasi kedalam buku, dan lain-lain. Dengan mengakui bahwa naskah telah terbit pertama kali pada INSOLOGI (Jurnal Sains dan Teknologi).
























