Peningkatan Produksi Bioetanol dari Rebung Bambu Ampel (Bambusa vulgaris) Menggunakan Sakarifikasi dan Fermentasi Simultan Terekayasa

Authors

  • Hendri Ropingi Institut Pertanian Bogor
  • Khaswar Syamsu Institut Pertanian Bogor
  • Irvan Setiadi Kartawiria Universitas Swiss German

DOI:

https://doi.org/10.55123/insologi.v5i1.7532

Keywords:

Bioethanol, Bamboo Shoots, Bambusa Vulgaris, Conventional SSF, Engineered SSF

Abstract

Bamboo shoots are lignocellulosic with low lignin and high protein content. This study compared bioethanol production from bamboo shoots (Bambusa vulgaris) using conventional and engineered simultaneous saccharification and fermentation (SSF) methods. The hydrolysis process was carried out using mold (Trichoderma reesei), followed by fermentation with yeast (Saccharomyces cerevisiae). The results of proximate analysis showed that bamboo shoots contained 25.51 ± 0.46% crude protein and 18.89 ± 0.37% fiber. In addition, the levels of cellulose, hemicellulose, and lignin were measured at 28.40 ± 0.49%, 31.28 ± 0.23%, and 3.77 ± 0.40%, respectively. The results showed that the conventional SSF technique produced ethanol at 3.42 ± 0.02 g/L, with a Yp/s of 0.37 ± 0.01 g/g. After the application of aeration engineering through the engineered SSF method, the ethanol concentration increased to 4.50 ± 0.01 g L⁻¹, with a Yp/s value of 0.50 ± 0.02 g/g. The ethanol formation rate and Yp/s values ​​in the engineered SSF method were also higher, namely 0.06 ± 0.00 g/L/h and 0.50 ± 0.02 g/g compared to the conventional SSF of 0.05 ± 0.00 g/L/h and 0.37 ± 0.02 g/g. The increase in ethanol yield from the engineered SSF method was 1.35 ± 0.05 times compared to the conventional SSF method.

Downloads

Download data is not yet available.

References

Aizuddin, K. N. A. K., Lai, K.-S., Baharum, N. A., Yong, W. T. L., Hoon, L. N., Cheng, W. H., Hamid, M. Z. A., & Abdullah, J. O. (2023). Bamboo for biomass energy production. BioResources, 18(1), 2386–2407. https://doi.org/10.15376/biores.18.1.Aizuddin

Algifari, M. H., Prismantoro, D., Hafsari, A. R., Abd, W., Qadr, A., Ozturk, A. B., Ilham, Z., Joshi, R. C., & Doni, F. (2025). Performance of hydrolytic enzymes produced by Trichoderma in sustainable crop production: Current insights and future perspectives. Sustainable Environment, 8511, 2593746. https://doi.org/10.1080/27658511.2025.2593746

Alminderej, F. M., Hamden, Z., El-Ghoul, Y., Hammami, B., Saleh, S. M., & Majdoub, H. (2022). Impact of calcium and nitrogen addition on bioethanol production by S. cerevisiae fermentation from date by-products: Physicochemical characterization and technical design. Fermentation, 8, 583. https://doi.org/10.3390/fermentation8110583

Baksi, S., Saha, D. S. S., & Basu, U. S. D. (2023). Pre‑treatment of lignocellulosic biomass : Review of various physico‑chemical and biological methods influencing the extent of biomass depolymerization. International Journal of Environmental Science and Technology, 20, 13895–13922. https://doi.org/10.1007/s13762-023-04838-4

Bonatto, D. (2022). The multiple roles of lipid metabolism in yeast physiology during beer fermentation. Genetics and Molecular Biology, 45, e20210325. https://doi.org/10.1590/1678-4685-gmb-2021-0325

Cavelius, P., Engelhart-Straub, S., Mehlmer, N., Lercher, J., Awad, D., & Brück, T. (2023). The potential of biofuels from first to fourth generation. PLoS Biology, 21(3), e3002063. https://doi.org/10.1371/JOURNAL.PBIO.3002063

Fan, L., Hu, J., Guo, Z., Chen, S., & He, Q. (2023). Shoot nutrition and flavor variation in two Phyllostachys species: Does the quality of edible bamboo shoot diaphragm and flesh differ? Foods, 12, 1180. https://doi.org/10.3390/foods12061180

Farrow, A., Miller, K. A., & Myllyvirta, L. (2020). Toxic air: The price of fossil fuels. Greenpeace Southeast Asia.

Gao, H., Wang, Y., Yang, Q., Peng, H., Li, Y., Zhan, D., Wei, H., Lu, H., Bakr, M. M. A., Ei-sheekh, M. M., Qi, Z., Peng, L., & Lin, X. (2021). Combined steam explosion and optimized green-liquor pretreatments are effective for complete saccharification to maximize bioethanol production by reducing lignocellulose recalcitrance in one-year-old bamboo. Renewable Energy, 175, 1069–1079. https://doi.org/10.1016/j.renene.2021.05.016

Gopan, G., Krishnan, R., & Arun, M. (2024). Review of bamboo biomass as a sustainable energy. International Journal of Low-Carbon Technologies, 19, 2733–2745. https://doi.org/10.1093/ijlct/ctae237

Jara, A. A., Razal, R. A., Migo, V. P., Acda, M. N., Calderon, M. M., Florece, L. M., & Peralta, E. K. (2020). Production of nanocellulose and biocomposites from kawayan kiling (Bambusa vulgaris Schrader ex Wendland) shoots. Ecosystems and Development Journal, 10(1 & 2), 10–17.

Kurasz, A., Lip, G. Y. H., Dobrzycki, S., & Ku, Ł. (2024). A breath of trouble: Unraveling the impact of air pollution on atrial fibrillation. Journal of Clinical Medicine, 13, 7400.

Liu, Z., Zhang, M., Hou, Q., & Shi, Z. (2024). Sulfomethylation reactivity enhanced the Fenton oxidation pretreatment of bamboo residues for enzymatic digestibility and ethanol production. Frontiers in Bioengineering and Biotechnology, 12, 1344964. https://doi.org/10.3389/fbioe.2024.1344964

Malmir, N., Zamani, M., Motallebi, M., Fard, N. A., & Mekuto, L. (2022). Cyanide biodegradation by Trichoderma harzianum and cyanide hydratase network analysis. Molecules, 27, 3336. https://doi.org/10.3390/molecules27103336

Maulana, M. I., Marwanto, M., Nawawi, D. S., Nikmatin, S., Febrianto, F., & Kim, N. H. (2020). Chemical components content of seven Indonesian bamboo species. IOP Conference Series: Materials Science and Engineering, 935(1), 012028. https://doi.org/10.1088/1757-899X/935/1/012028

Mohammed, M. K., Balla, H. H., Al-Dulaimi, Z. M. H., Kareem, Z. S., & Al-Zuhairy, M. S. (2021). Effect of ethanol-gasoline blends on SI engine performance and emissions. Case Studies in Thermal Engineering, 25, 100891. https://doi.org/10.1016/j.csite.2021.100891

Mori, M., Ponce-de-León, M., Peretó, J., & Montero, F. (2016). Metabolic complementation in bacterial communities: Necessary conditions and optimality. Frontiers in Microbiology, 7, 1553. https://doi.org/10.3389/fmicb.2016.01553

Naim, A., Tan, C. S. Y., & Liew, F. K. (2022). Thermal properties of bamboo cellulose isolated from bamboo culms and shoots. BioResources, 17(3), 4806–4815. https://doi.org/10.15376/biores.17.3.4806-4815

Peteghem, L. Van, Sakarika, M., & Matassa, S. (2022). The role of microorganisms and carbon-to-nitrogen ratios for microbial protein production from bioethanol. Applied and Environmental Microbiology, 88, 22. https://doi.org/10.1128/aem.01188-22

Petrášek, Z., & Nidetzky, B. (2025). The effect of accessibility of insoluble substrate on the overall kinetics of enzymatic degradation. Biotechnology and Bioengineering, 122, 895–907. https://doi.org/10.1002/bit.28921

Qian, Y., Jia, J., Chen, Z., Wang, K., Li, P., Gao, P., Ying, Y., & Shi, W. (2025). Environmental drivers and transcriptomic variations shaping Lei bamboo shoots across cultivation regions. Frontiers in Plant Science, 16, 1565665. https://doi.org/10.3389/fpls.2025.1565665

Rahayuningsih, M., Febrianti, F., & Syamsu, K. (2022). Enhancement of bioethanol production from tofu waste by engineered simultaneous saccharification and fermentation (SSF) using co-culture of mold and yeast. IOP Conference Series: Earth and Environmental Science, 1063, 012004. https://doi.org/10.1088/1755-1315/1063/1/012004

Ramadhani, G. H., Syamsu, K., Kartika, I. A., & Kartawiria, I. S. (2024). Aplikasi sakarifikasi dan fermentasi simultan dalam produksi bioetanol dari rebung bambu. Agrointek, 18(2), 312–319. https://doi.org/10.21107/agrointek.v18i2.17294

Rana, K. R., Chongtham, N., & Bisht, M. S. (2022). Evaluation of proximate composition, vitamins, amino acids, antioxidant activities with minerals and bioactive compounds of young edible bamboo (Phyllostachys mannii Gamble). Current Research in Nutrition and Food Science Journal, 10(1), 321–333. https://doi.org/10.12944/CRNFSJ.10.1.27

Rohadi, Sampurno, A., Wicaksono, M. F., & Saputri, N. I. (2020). The effect of fermentation period of yellow bamboo shoots (B. vulgaris Striata) using L. plantarum starter on physical and chemical properties of its flour as dietary fiber source. IOP Conference Series: Earth and Environmental Science, 443, 012019. https://doi.org/10.1088/1755-1315/443/1/012019

Shen, T., Wu, Q., & Xu, Y. (2021). Biodegradation of cyanide with Saccharomyces cerevisiae in Baijiu fermentation. Food Control, 127, 108107. https://doi.org/10.1016/j.foodcont.2021.108107

Singh, B., Korstad, J., Guldhe, A., & Kothari, R. (2022). Editorial: Emerging feedstocks & clean technologies for lignocellulosic biofuel. Frontiers in Energy Research, 10, 917081. https://doi.org/10.3389/fenrg.2022.917081

Singhal, P., Satya, S., & Naik, S. . (2021). Fermented bamboo shoots: A complete nutritional, anti-nutritional and antioxidant profile of the sustainable and functional food to food security. Food Chemistry: Molecular Sciences, 3, 100041. https://doi.org/10.1016/j.fochms.2021.100041

Sulaiman, M. S., Ramle, S. F. M., Geng, B. J., Hashim, R., Sulaiman, O., Ibrahim, N. I., & Zaudin, N. A. C. (2016). Bambusa vulgaris: Chemical composition and cell wall structure. European International Journal of Science and Technology, 5, 27–39.

Syadiah, E. A., Haditjaroko, L., & Syamsu, K. (2018). Bioprocess engineering of bioethanol production based on sweet sorghum bagasse by co-culture technique using Trichoderma reesei and Saccharomyces cerevisiae. IOP Conference Series: Earth and Environmental Science, 209(1), 012018. https://doi.org/10.1088/1755-1315/209/1/012018

Syamsu, K., Haditjaroko, L., & Syadiah, E. A. (2020). Bio-ethanol production from sweet sorghum bagasse by engineered simultaneous saccharification and fermentation technology using Trichoderma reesei and Saccharomyces cerevisiae. IOP Conference Series: Earth and Environmental Science, 472, 012025. https://doi.org/10.1088/1755-1315/472/1/012025

Tanwar, M. D., Torres, F. A., Alqahtani, A. M., Tanwar, P. K., Bhand, Y., & Doustdar, O. (2023). Promising bioalcohols for low-emission vehicles. Energies, 16, 597. https://doi.org/10.3390/en16020597

Ummalyma, S. B., Herojit, N., & Sukumaran, R. K. (2024). Alkaline hydrogen peroxide pretreatment of bamboo residues and its influence on physiochemical properties and enzymatic digestibility for bioethanol production. Frontiers in Energy Research, 12, 1444813. https://doi.org/10.3389/fenrg.2024.1444813

Venagaya, C. A., Anam, S., & Yuyun, Y. (2017). Variasi waktu dan cara pengolahan sebelum dikonsumsi terhadap penurunan kandungan asam sianida pada varietas rebung bambu ampel (Bambusa vulgaris schrad. Ex wendl.). KOVALEN, 3(2), 189. https://doi.org/10.22487/j24775398.2017.v3.i2.8726

Wu, W., Li, P., Huang, L., Wei, Y., Li, J., Zhang, L., & Jin, Y. (2023). The role of lignin structure on cellulase adsorption and enzymatic hydrolysis. Biomass, 3, 96–107. https://doi.org/10.3390/biomass3010007

Wu, Z., Peng, K., Zhang, Y., Wang, M., Yong, C., Chen, L., Qu, P., Huang, H., Sun, E., & Pan, M. (2022). Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Materials Today Bio, 16, 100445. https://doi.org/10.1016/j.mtbio.2022.100445

Zakaria, M. H. Z., & Che Pa, N. F. (2023). Production of bioethanol from bamboo powder via dilute sulphuric acid-sodium hydroxide pre-treatment and simultaneous saccharification and fermentation (SSF). Journal of Advanced Industrial Technology and Application, 4(2), 1–9. https://doi.org/10.30880/jaita.2023.04.02.001

Downloads

Published

2026-02-10

How to Cite

Hendri Ropingi, Khaswar Syamsu, & Irvan Setiadi Kartawiria. (2026). Peningkatan Produksi Bioetanol dari Rebung Bambu Ampel (Bambusa vulgaris) Menggunakan Sakarifikasi dan Fermentasi Simultan Terekayasa. INSOLOGI: Jurnal Sains Dan Teknologi, 5(1), 56–66. https://doi.org/10.55123/insologi.v5i1.7532