Deteksi Hewan Secara Real-Time Menggunakan Algoritma You Only Look Once (YOLO)

Authors

  • Fersellia Fersellia Universitas Ma'arif Nahdlatul Ulama Kebumen
  • Anisa Lutfiyani Universitas Ma'arif Nahdlatul Ulama Kebumen
  • Fahmi Fachri Universitas Ma'arif Nahdlatul Ulama Kebumen
  • Endang Wahyuningsih Universitas Ma'arif Nahdlatul Ulama Kebumen

DOI:

https://doi.org/10.55123/insologi.v5i1.7592

Keywords:

Deteksi Hewan, CNN, YOLO, Real-Time

Abstract

Forest areas in Indonesia are very vital and are the lungs of the world. The government and forest police need assistance in tackling forest fires and animal rescue, especially system assistance that can be used in real-time so that rescue and first aid can be carried out immediately. This is what moves the research team to conduct research in making a prototype of a real-time animal detection system. The goal to be achieved is to help forest police, SAR teams and teams from local governments to detect animals in forest areas in real-time. This research is quantitative research using experimental methods. The subject of our research is the image images that we get in real time from the webcam, especially animal images. Data was collected using the help of a webcam installed in the forest area. Image and video processing is done using the You Look Only Once (YOLO) and Convolutional Neural Network (CNN) algorithms. This study obtained 82% accuracy, 86.11% precision and 82% recall. The camera angle shooting from the front gets 100% accuracy.

Downloads

Download data is not yet available.

References

Baccouche, Asma, Begonya Garcia-Zapirain, Yufeng Zheng, Adel S. Elmaghraby,Early detection and classification of abnormality in prior mammograms using image-to-image translation and YOLO techniques, Computer Methods and Programs in Biomedicine, Volume 221, 2022,106884, ISSN 0169-2607, https://doi.org/10.1016/j.cmpb.2022.106884.

CNN Indonesia. (2022). Data KLHK Tahun 2022 Periode I: Hutan Primer Berkurang. https://www.cnnindonesia.com/nasional/20220413073537-20-784096/data-klhk-tahun-2022-periode-i-hutan-primer-berkurang

Dezara, Judithia Handriani. Metodologi Penelitian. https://elibrary.unikom.ac.id/id/eprint/1558/8/11.%20UNIKOM_41815217_Dezara%20Judithia%20Handriani_BAB%20III.pdf

Efriadi, D., Rahmaddeni, R., Agustin, A., & Junadhi, J. (2022). Prediksi Penambahan Piutang Iuran Jaminan Sosial Ketenagakerjaan menggunakan Algoritma K-Nearest Neighbor. Edumatic: Jurnal Pendidikan Informatika, 6(1), 49-57.

Guo, Z., Wang, C., Yang, G., Huang, Z., & Li, G. (2022). MSFT-YOLO: Improved YOLOv5 Based on Transformer for Detecting Defects of Steel Surface. Sensors, 22(9), 3467. https://www.mdpi.com/1424-8220/22/9/3467

Hayat, S., S. Kun, Z. Tengtao, Y. Yu, T. Tu and Y. Du, ”A Deep Learning Framework Using Convolutional Neural Network for Multi-Class Object Recognition, ”2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, 2018, pp. 194-198.

Jiang, Chenchen, Huazhong Ren, Xin Ye, Jinshun Zhu, Hui Zeng, Yang Nan, Min Sun, Xiang Ren, Hongtao Huo, Object detection from UAV thermal infrared images and videos using YOLO models, International Journal of Applied Earth Observation and Geoinformation, Volume 112, 2022, 102912, ISSN 1569-8432, https://doi.org/10.1016/j.jag.2022.102912.

Jupiyandi, S., Saniputra, F. R., Pratama, Y., Dharmawan, M. R., & Cholissodin, I. (2019). Pengembangan deteksi citra mobil untuk mengetahui jumlah tempat parkir menggunakan CUDA dan modified YOLO. Jurnal Teknologi Informasi dan Ilmu Komputer, 6(4), 413-419. https://jtiik.ub.ac.id/index.php/jtiik/article/view/1275

Khairunnas, K., Yuniarno, E. M., & Zaini, A. (2021). Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot. Jurnal Teknik ITS, 10(1), A50-A55. https://ejurnal.its.ac.id/index.php/teknik/article/download/61622/6647

KSDAE. (2022). Kini 919 Jenis Tumbuhan dan Satwa Liar di Indonesia Dilindungi Undang-Undang. http://ksdae.menlhk.go.id/info/4246/kini-919-jenis-tumbuhan-dan-satwa-liar-di-indonesia-dilindungi-undang-undang.html

Kumar, Akhil, Arvind Kalia, Aayushi Kalia, ETL-YOLO v4: A face mask detection algorithm in era of COVID-19 pandemic, Optik, Volume 259, 2022, 169051, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.169051.

Lauw, K. O., Santoso, L. W., & Intan, R. (2020). Identifikasi Jenis Anjing Berdasarkan Gambar Menggunakan Convolutional Neural Network Berbasis Android. Jurnal Infra, 8(2), 37-43. https://publication.petra.ac.id/index.php/teknik-informatika/article/download/10496/9339

Li, Jiangyun, Zhenfeng Su, Jiahui Geng, Yixin Yin, Real-time Detection of Steel Strip Surface Defects Based on Improved YOLO Detection Network, IFAC-PapersOnLine, Volume 51, Issue 21, 2018, Pages 76-81, ISSN 2405-8963, https://doi.org/10.1016/j.ifacol.2018.09.412.

Profauna. (2022). Fakta tentang Satwa Liar Indonesia. https://www.profauna.net/id/fakta-satwa-liar-di-indonesia

Reddy, B. K., S. Bano, G. G. Reddy, R. Kommineni and P. Y. Reddy, "Convolutional Network based Animal Recognition using YOLO and Darknet," 2021 6th International Conference on Inventive Computation Technologies (ICICT), 2021, pp. 1198-1203, doi: 10.1109/ICICT50816.2021.9358620.

Redmon, J., S. Divvala, R. Girshick, A. Farhadi. 2016. You only look once: Unified, real-time object detection. Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., 779–788. 10.1021/je00029a022

Sumit, S. S., Watada, J., Roy, A., & Rambli, D. R. A. (2020, April). In object detection deep learning methods, YOLO shows supremum to Mask R-CNN. In Journal of Physics: Conference Series (Vol. 1529, No. 4, p. 042086). IOP Publishing. https://iopscience.iop.org/article/10.1088/1742-6596/1529/4/042086/pdf

Tran, Duy & Fischer, Pascal & Smajic, Alen & So, Yujin. (2021). Real-time Object Detection for Autonomous Driving using Deep Learning. 10.13140/RG.2.2.19546.26562.

Wang, H., G. Yang, E. Li, Y. Tian, M. Zhao and Z. Liang, "High-Voltage Power Transmission Tower Detection Based on Faster R-CNN and YOLO-V3," 2019 Chinese Control Conference (CCC), 2019, pp. 8750-8755, doi: 10.23919/ChiCC.2019.8866322.

Xu, Jianfeng, Yuanjian Zhang, Duogian Miao.Three-way confusion matrix for classification: A measure driven view. Information Sciences Volume 507, January 2020. Elsevier. https://doi.org/10.1016/j.ins.2019.06.064

Downloads

Published

2026-02-10

How to Cite

Fersellia, F., Anisa Lutfiyani, Fahmi Fachri, & Endang Wahyuningsih. (2026). Deteksi Hewan Secara Real-Time Menggunakan Algoritma You Only Look Once (YOLO). INSOLOGI: Jurnal Sains Dan Teknologi, 5(1), 263–269. https://doi.org/10.55123/insologi.v5i1.7592