Analisis Metode Apriori Untuk Memprediksi Persediaan Barang Pada Warung
DOI:
https://doi.org/10.55123/insologi.v1i4.807Keywords:
Prediction, Warung, Apriori Algorithm, WekaAbstract
The data processing system in the shop is still manual. Previously, the shop had not been able to predict the stock or inventory of goods. Therefore, this system predicts the inventory of goods in the shop. so that the data processing system at the shop can be handled by problems that occur and can form information quickly, precisely, and well. The use of the a priori method which will be used to calculate the prediction of the supply of goods in stock that is still there. And this a priori method will later be used to calculate odds. Data storage using SQL Server database. With the development of technology, the ability to collect and process data is also growing. Data processing has become the advantage of computers, computers have also penetrated various aspects, both in the field of education and in the business world. Competition in the global business has built tight competition between one stall and another. This algorithm is used to analyze when purchasing goods that have run out of stock by classifying which goods have been added to stock or not, as a result, the availability of goods remains stable and maintained. The author is currently making inventory predictions at the stalls to develop an existing system with the a priori method.
Downloads
References
Bala, A. (2016). Performance Analysis of Apriori and FP-Growth Algorithms ( Association Rule Mining ). Int.J.Computer Technology & Applications, 7(April), 279–293.
Dio Prima Mulya. (2019). Analisa Dan Implementasi Association Rule Dengan Algoritma Fp-Growth Dalam Seleksi Pembelian Tanah Liat. Teknologi Dan Sistem Informasi Bisnis, 1(1), 47–57.
Domi Sepri, M. A. (2017). Analisa Dan Perbandingan Metode Algoritma Apriori Dan Fp-Growth Untuk Mencari Pola Daerah Strategis. 1(1).
Eska, J. (2018). Penerapan Data Mining Untuk Prediksi Penjualan Wallpaper Menggunakan Algoritma C4.5. 2. https://doi.org/10.31227/osf.io/x6svc
Haryanto, D., Oslan, Y., & Dwiyana, D. (2011). Implementasi Analisis Keranjang Belanja Dengan Aturan Asosiasi Menggunakan Algoritma Apriori Pada Penjualan Suku Cadang Motor. Jurnal Buana Informatika, 2(2), 81–94. https://doi.org/10.24002/jbi.v2i2.311
Hendrickx, T., Cule, B., Meysman, P., Naulaerts, S., Laukens, K., & Goethals, B. (2015). Mining association rules in graphs based on frequent cohesive itemsets. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9078(3), 637–648. https://doi.org/10.1007/978-3-319-18032-8_50
Informatika, P., Darma, B., Pakaian, M., Apriori, A., Kusumo, S., Mining, D., & Algoritma, D. (2013). Pakaian Yang Paling Diminati Pada Mode Fashion Group Medan. 35–39.
King, D. G., Young, W. E. V., Clarke, A. J., Cain, A. J., & Dimbleby, G. W. (1966). The Lanhill Long Barrow, Wiltshire, England: An Essay in Reconstruction. Proceedings of the Prehistoric Society, 32, 73–85. https://doi.org/10.1017/S0079497X00014341
Kurnia, Y., Isharianto, Y., Giap, Y. C., Hermawan, A., & Riki. (2019). Study of application of data mining market basket analysis for knowing sales pattern (association of items) at the O! Fish restaurant using apriori algorithm. Journal of Physics: Conference Series, 1175(1). https://doi.org/10.1088/1742-6596/1175/1/012047
M.Kavitha, & Subbaiah, D. S. (2020). Association Rule Mining using Apriori Algorithm for Extracting Product Sales Patterns in Groceries. International Journal of Engineering Research and Technology (IJERT), 8(3), 5–8. www.ijert.org
Maulana, A., & Fajrin, A. A. (2018). Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part Motor. Klik - Kumpulan Jurnal Ilmu Komputer, 5(1), 27. https://doi.org/10.20527/klik.v5i1.100
Nurchalifatun, F. (2015). Penerapan Metode Asosiasi Data Mining Menggunakan Algoritma Apriori Untuk Mengetahui Kombinasi Antar Itemset Pada Pondok Kopi. Data Mining.
Putra, P. B. I. S., Suryani, N. P. S. M., & Aryani, S. (2018). Analysis of Apriori Algorithm on Sales Transactions to Arrange Placement of Goods on Minimarket. IJEET International Journal of Engineering and Emerging Technology, 3(1), 13–17.
Rezkiani. (2016). Implementasi Data Mining Dengan Algoritma Apriori Untuk Menentukan Merek Sepatu Yang Diminati Pada Mahasiswa Pascasarjana Kelas 14.1a.01 Stmik Nusa Mandiri jakarta. KNIT-2 Nusa Mandiri, 2(1), 49-INF.56.
Santoso, H., Hariyadi, I. P., & Prayitno. (2016). Data Mining Analisa Pola Pembelian Produk. Teknik Informatika, 1, 19–24.
Ummi, K. (2016). Nalisa Data Mining Dalam Penjualan Sparepart Mobil Dengan Menggunakan Metode Algoritma Apriori (Studi Kasus : Di Pt. Idk 1 Medan). CSRID (Computer Science Research and Its Development Journal), 8(3), 155–164. https://doi.org/10.22303/csrid.8.3.2016.155-164
Makassar, U. D., & Mobile, A. (2021). Sistem Pengolahan Data Penduduk Pada Kantor Desa Bowong Cindea Kecamatan Bungoro Kabupaten Pangkajene Dan Kepulauan Berbasis Web. 88–97.
Makmur, T. (2019). Teknologi Informasi : Dampak dan Implikasi Bagi Perpustakaan, Perpustakawan, serta Pemustaka. Perpustakaan Dan Ilmu Informasi, 1(1), 65.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Wulan Dari

This work is licensed under a Creative Commons Attribution 4.0 International License.
Hak cipta pada setiap artikel adalah milik penulis.
Penulis mengakui bahwa INSOLOGI (Jurnal Sains dan Teknologi) sebagai publisher yang mempublikasikan pertama kali dengan lisensi Creative Commons Attribution 4.0 International License.
Penulis dapat memasukan tulisan secara terpisah, mengatur distribusi non-ekskulif dari naskah yang telah terbit di jurnal ini kedalam versi yang lain, seperti: dikirim ke respository institusi penulis, publikasi kedalam buku, dan lain-lain. Dengan mengakui bahwa naskah telah terbit pertama kali pada INSOLOGI (Jurnal Sains dan Teknologi).
























