Analisis Sentimen Berdasarkan pada Twitter (X) terhadap Layanan Indihome Menggunakan Algoritma Support Vector Machine (SVM)

Authors

  • Diana Puspitasari Universitas Bina Darma
  • Tata Sutabri Universitas Bina Darma

DOI:

https://doi.org/10.55123/jumintal.v3i2.4449

Keywords:

Indihome, Twitter, Sentimen Analysis, Support Vector Machine

Abstract

One of the social media with 24.85 million active users is Twitter. Information published on Twitter can be in the form of user opinions on an object, such as a product or service. Therefore, the company utilizes Twitter as a medium to disseminate information. This makes the company use Twitter as a medium to disseminate information. An example is an Internet Service Provider (ISP) company such as Indihome. Through Twitter, users can discuss their complaints and satisfaction with Indihome services. A method is needed, namely sentiment analysis to understand whether the textual data includes neutral opinion, negative opinion or positive opinion. So, the authors use the Support Vector Machine (SVM) method in sentiment analysis of Indihome service user opinions on Twitter, with the aim of getting a sentiment classification model using SVM and to find out how much accuracy is produced by the SVM method applied to sentiment analysis and to find out how satisfied Indihome service users are based on Twitter. After testing with the SVM method the results are 91% accuracy. Precision 51% Recall 75% and F1-Score 59%. 

Downloads

Download data is not yet available.

References

Alexander, N., Bria, R. and Witanti, A. (2024) ‘ANALISIS SENTIMEN MASYARAKAT INDONESIA MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE TENTANG PILPRES 2024’, 7(6).

Alviani, V., Alam, S. and Kurniawan, I. (2023) ‘Analisis Sentimen Review Aplikasi Wetv Pada Platform Twitter Menggunakan Support Vector Machine’, STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, 2(3), pp. 143–149. doi: 10.55123/storage.v2i3.2351.

Ananda, F. D. and Pristyanto, Y. (2021) ‘Analisis Sentimen Pengguna Twitter Terhadap Layanan Internet Provider Menggunakan Algoritma Support Vector Machine Sentiment Analysis of Twitter Users on Internet Service Providers Using Support Vector Machine Algorithm’, 20(2), pp. 407–416. doi: 10.30812/matrik.v20i2.1130.

Anggraini, D. and Sutabri, T. (2024) ‘IJM : Indonesian Journal of Multidisciplinary Pengembangan Aplikasi Penyaringan Spam e-Mail Menggunakan Teknik Machine Learning dengan Metode Support Vector Machines’, 2, pp. 106–114.

Arfat, M. F., Nurkholis, A. and Kurniawan, I. (2022) ‘Analisis Sentimen Masyarakat Indonesia Terkait Vaksin Covid-19 Pada Media Sosial Twitter Menggunakan Metode Support Vector Machine ( SVM )’, 7(2), pp. 96–104.

Cantika Larasati, R., Dewi, C. and Juli, C. H. (2024) ‘Analisis sentimen produk kecantikan jenis moisturizer di twitter menggunakan algoritma super vector machine’, Tekinkom, 7(1), pp. 124–134. doi: 10.37600/tekinkom.v7i1.1243.

Farasqa Nauval Akbar, B. et al. (2023) ‘Analisis Sentimen Terhadap Anies Baswedan Menggunakan Metode Support Vector Machine Studi Kasus Media Sosial Twitter Sentiment Analysis of Anies Baswedan Using the Support Vector Machine Method Case Study of Twitter Social Media’, Jurnal Smart Teknologi, 4(6), pp. 2774–1702. Available at: http://jurnal.unmuhjember.ac.id/index.php/JST.

Herlambang, F. P. and Avianto, D. (2023) ‘Analisis Sentimen Opini Pengguna Twitter Terhadap Tragedi Kanjuruhan Malang dengan Metode Support Vector Machine’, 7, pp. 1727–1739. doi: 10.30865/mib.v7i4.6332.

Ilmiah, J. and Pendidikan, W. (2024) ‘Analisis Sentimen Isu Childfree Di Media Sosial Twitter Menggunakan Algoritma Support Vector Machine Lidya Nurhidayati 1 , Yuyun Umaidah 2 , Ultach Enri Universitas Singaperbangsa Karawang’, 10(4), pp. 422–430.

Saputra, R. R., & Sutabri, T. (2024). "EVALUASI TEKNOLOGI METAVERSE ROBLOX MENGGUNAKAN METODE SUPPORT VECTOR MACHINE," vol. 2, pp. 68–72, 2024.

Petiwi, M. I., Triayudi, A. and Sholihati, I. D. (2022) ‘Analisis Sentimen Gofood Berdasarkan Twitter Menggunakan Metode Naïve Bayes dan Support Vector Machine’, Jurnal Media Informatika Budidarma, 6(1), p. 542. doi: 10.30865/mib.v6i1.3530.

Radiena, G. et al. (2023) ‘APLIKASI KAI ACCESS MENGGUNAKAN METODE SUPPORT VECTOR MACHINE’, (April), pp. 1–10.

Ramlan, R., Satyahadewi, N. and Andani, W. (2023) ‘Analisis Sentimen Pengguna Twitter Menggunakan Support Vector Machine Pada Kasus Kenaikan Harga BBM’, Jambura Journal of Mathematics, 5(2), pp. 431–445. doi: 10.34312/jjom.v5i2.20860.

Robison Manalu, D. et al. (2022) ‘METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi ANALISIS SENTIMEN TWITTER TERHADAP WACANA PENUNDAAN PEMILU DENGAN METODE SUPPORT VECTOR MACHINE’, Menthomika, 6(2), pp. 149–156. Available at: https://doi.org/10.46880/jmika.Vol6No2.pp149-156.

Sulistiani, V. A. and Hamka, M. (2024) ‘Analisis Sentimen Pengguna Media Sosial Terhadap Identitas Kependudukan Digital Menggunakan Metode Support Vector Machine (SVM)’, Journal of Information System …, 5(4), pp. 1323–1332. doi: 10.47065/josh.v5i4.5211.

Sumayah, S. et al. (2023) ‘ANALYSIS OF SENTIMENT OF INDONESIAN COMMUNITY ON METAVERSE ANALISIS SENTIMEN MASYARAKAT INDONESIA TERHADAP METAVERSE’, 4(1), pp. 143–150.

Syahputra, D. W., Rahayudi, B. and Muflikhah, L. (2022) ‘Analisis Sentimen Twitter terhadap Kebijakan Pemberlakuan Pembatasan Kegiatan Masyarakat menggunakan Metode Support Vector Machine’, Fakultas Ilmu Komputer, Universitas Brawijaya, 6(3), pp. 1067–1072.

Wati, R. et al. (2021) ‘Analisis Sentimen Persepsi Publik Mengenai PPKM Pada Twitter Berbasis SVM Menggunakan Python’, 06, pp. 240–247.

Sutabri, Tata. (2012). Analisis Sistem Informasi. Yogyakarta: Andi Offset.

Sutabri, Tata. (2004). Pemrograman Terstruktur. Yogyakarta: Andi Offset.

Sutabri, Tata dan Darmawan Napitupulu. (2019). Sistem Informasi Bisnis. Yogyakarta: Andi Offset.

Downloads

Published

2024-11-25

How to Cite

Diana Puspitasari, & Tata Sutabri. (2024). Analisis Sentimen Berdasarkan pada Twitter (X) terhadap Layanan Indihome Menggunakan Algoritma Support Vector Machine (SVM). JUMINTAL: Jurnal Manajemen Informatika Dan Bisnis Digital, 3(2), 58–71. https://doi.org/10.55123/jumintal.v3i2.4449