Analysis of K-Means Algorithm for Clustering of Covid-19 Social Assistance Recipients

Authors

  • Sri Rahmayani STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • S Sumarno STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Zulia Almaida Siregar STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v1i1.166

Keywords:

Data Mining, K-Means, Cluster, Covid-19, Social Assistance

Abstract

During the Covid-19 pandemic, the government provided assistance distributed through each sub-district throughout the province of Indonesia, one of which was the Pahlawan Village in the East Siantar District Pematangsiantar City. So far, the assistance provided by Kelurahan Pahlawan is still done manually, so errors in data collection and distribution of aid may occur. To overcome this problem, a study was carried out by applying the K-Means algorithm to determine the eligibility cluster of Covid-19 beneficiaries, which was carried out by collecting population data according to predetermined attributes. Then the population data will be clustered using the K-Means algorithm and tested using the Rapid Miner application. The clustering results obtained are that cluster 0 consists of 26 data and that cluster 1 consists of 24 data. The recipients of Covid-19 social assistance using the K-Means algorithm show that those entitled to receive the gift are the elderly (elderly). Based on this, it can be concluded that the K-Means Algorithm can be applied to produce more practical information in determining who is entitled to receive assistance

References

Saleh, A. (2015). Penerapan Data Mining Dengan Metode Klasifikasi Naive Bayes Untuk Memprediksi Kelulusan Mahasiswa Dalam Mengikuti English Proficiency Test (Studi Kasus : Universitas Potensi Utama). Konferensi Nasional Sistem Informasi, At Universitas Klabat,Manado,Indonesia, June, 1–6.

Mardi, Y. (2017). Data Mining : Klasifikasi Menggunakan Algoritma C4.5. Edik Informatika, 2 (2), 213–219. https://doi.org/10.22202/ei.2016.v2i2.1465

Aditya, A., Jovian, I., & Sari, B. N. (2020). Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019. Jurnal Media Informatika Budidarma, 4(1), 51. https://doi.org/10.30865/mib.v4i1.1784

Sembiring, F., Fauzi, M. T., Khalifah, S., Khotimah, A. K., & Rubiati, Y. (2020). Sistem Pendukung Keputusan Penerima Bantuan Covid 19 menggunakan Metode Simple Additive Weighting (SAW) (Studi Kasus : Desa Sundawenang). Explore:Jurnal Sistem Informasi Dan Telematika, 11(2), 97. https://doi.org/10.36448/jsit.v11i2.1563

Saleh, A. (2015). Penerapan Data Mining Dengan Metode Klasifikasi Naive Bayes Untuk Memprediksi Kelulusan Mahasiswa Dalam Mengikuti English Proficiency Test (Studi Kasus : Universitas Potensi Utama). Konferensi Nasional Sistem Informasi, At Universitas Klabat,Manado,Indonesia, June, 1–6.

Handoko, K. (2016). Penerapan Data Mining Dalam Meningkatkan Mutu Pembelajaran Pada Instansi Perguruan Tinggi Menggunakan Metode K-Means Clustering (Studi Kasus Di Program Studi Tkj Akademi Komunitas Solok Selatan). Jurnal Teknologi Dan Sistem Informasi, 02(03), 31–40. http://teknosi.fti.unand.id/index.php/teknosi/article/view/70

Sari, R. W., Wanto, A., & Windarto, A. P. (2018). Implementasi Rapid Miner Dengan Metode K-Means (Study Kasus: Imunisasi Campak Pada Balita Berdasarkan Provinsi). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 2(1), 224–230. https://doi.org/10.30865/komik.v2i1.930

Aditya, A., Jovian, I., & Sari, B. N. (2020). Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019. Jurnal Media Informatika Budidarma, 4(1), 51. https://doi.org/10.30865/mib.v4i1.1784

Handoko, K. (2016). Penerapan Data Mining Dalam Meningkatkan Mutu Pembelajaran Pada Instansi Perguruan Tinggi Menggunakan Metode K-Means Clustering (Studi Kasus Di Program Studi Tkj Akademi Komunitas Solok Selatan). Jurnal Teknologi Dan Sistem Informasi, 02(03), 31–40. http://teknosi.fti.unand.id/index.php/teknosi/article/view/70

Abdillah, G., Putra, F. A., & Renaldi, F. (2016). Penerapan Data Mining Pemakaian Air Pelanggan Untuk Menentukan Klasifikasi Potensi Pemakaian Air Pelanggan Baru Di Pdam Tirta Raharja Menggunakan Algoritma K-Means. Sentika 2016, Sentika, 18–19.

M. A. Hanafiah and A. Wanto, “Implementation of Data Mining Algorithms for Grouping Poverty Lines by District/City in North Sumatra,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 315–322, 2020.

Downloads

Published

2022-03-18

How to Cite

Rahmayani, S., Sumarno, S., & Siregar, Z. A. (2022). Analysis of K-Means Algorithm for Clustering of Covid-19 Social Assistance Recipients. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(1), 77–84. https://doi.org/10.55123/jomlai.v1i1.166

Issue

Section

Articles