Material Sales Clustering Using the K-Means Method

Authors

  • Sri Rahayuni STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Indra Gunawan STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Ika Okta Kirana STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v1i1.177

Keywords:

Data Mining, Sales, K-Means, Family Gypsum

Abstract

Along with the increasing growth of technology and the development of science, business competition is also getting faster and therefore we are required to always develop the business in order to always survive in the competition. Family Gypsum is a store whose sales system is the same as a supermarket, namely the buyer will take the goods to be purchased himself. From this, data on sales, purchases of goods, and unexpected expenses are not structured properly so that the data only functions as an archive. In this research, data mining is applied using the K-Means calculation process which provides a standard process for using data mining in various fields to be used in clustering because the results of this method are easy to understand and interpret. The results obtained from the K-Means method that has been implemented into Rapid Miner have the same value, which produces 3 clusters, namely clusters that do not sell, clusters that sell, and clusters that sell very well. With red clusters with 2 items, the clusters selling green with 28 items, the clusters selling with blue with 30 items. The results of this study can be entered into the Family Gypsum store Jl. H. Ulakma Sinaga, Red Rambung who is getting more attention on each sale based on the cluster that has been done

References

Siregar, M. H. (2018). Data Mining Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means (Studi Kasus Di Toko Adi Bangunan). Jurnal Teknologi dan Open Source, 83-91.

Pranata, R. E., Gunawan, I., & Sumarno, S. (2021). Algoritma Backpropagation Dalam Melakukan Estimasi Penjualan Beras Pada CV. Hariara Pematangsiantar. Journal of Computer System and Informatics (JoSYC), 2 (2), 210-221.

Jollyta, Denny., Ramadhan, William., and Zarlis, Muhammad. (2020). Konsep Data Mining dan Penerapan. Yogyakarta: Deepublish.

Irawan, E., & Gunawan, I. (2019). Penerapan C4. 5 pada Keaktifan Mahasiswa dalam Pengumpulan Berkas di Biro Akademik. REMIK (Riset dan E-Jurnal Manajemen Informatika Komputer), 3 (2), 87-90.

E. Elisa, (2017). Analisa dan Penerapan Algoritma C4.5 Dalam Data Mining Untuk Mengidentifikasi Faktor - Faktor Penyebab Kecelakaan Kerja Kontruksi PT. Arupadhatu Adisesanti. vol. 2, no. 1, pp. 36–41.

Sari, R. W., Wanto, A., & Windarto, A. P. (2018). Implementasi Rapidminer Dengan Metode K-Means (Study Kasus: Imunisasi Campak Pada Balita Berdasarkan Provinsi). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 2(1), 224–230. https://doi.org/10.30865/komik.v2i1.930

Bulolo, E, Data Mining Untuk Perguruan Tinggi. Yogyakarta: Deepublish, 2020.

Aditya, A., Jovian, I., & Sari, B. N. (2020). Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019. Jurnal Media Informatika Budidarma, 4 (1), 51. https://doi.org/10.30865/mib.v4i1.1784

Surmayanti, Marfalino, H., and Rahmi, A. (2015). Penerapan Analisis Clustering pada Penjualan Komputer dengan Perancangan Aplikasi Data Mining Menggunakan Algoritma K-Means (Studi Kasus Toko Tri Buana Komputer Kota Solok). SENATKOM, 54.

Abdillah, G., Putra, F. A., & Renaldi, F. (2016). Penerapan Data Mining Pemakaian Air Pelanggan Untuk Menentukan Klasifikasi Potensi Pemakaian Air Pelanggan Baru Di Pdam Tirta Raharja Menggunakan Algoritma K-Means. Sentika 2016, Sentika, 18–19.

Downloads

Published

2022-03-18

How to Cite

Rahayuni, S., Gunawan, I., & Kirana, I. O. (2022). Material Sales Clustering Using the K-Means Method. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(1), 85–94. https://doi.org/10.55123/jomlai.v1i1.177

Issue

Section

Articles