Application of Backpropagation Algorithm for Prediction of Sales Results of Basic Foodstuffs at Artha Water Store
DOI:
https://doi.org/10.55123/jomlai.v4i1.5764Keywords:
Artificial Neural Network , Backpropagation , Sales , Artha Water StoreAbstract
Companies need to implement sales growth forecasting strategies to create a balance between inventory and sales needs. Without this effort, an imbalance between inventory and sales can cause losses for the company, both in terms of finance and customer satisfaction. As a business entity engaged in the sale of basic necessities, Artha Water is committed to managing its business seriously in order to achieve profits and meet customer needs optimally. However, the development of consumer consumption patterns and sales growth lines at Artha Water which are fluctuating (up and down) make it quite difficult for the cooperative to balance inventory with demand for goods from consumers. By utilizing science in Artificial Neural Networks, we can predict future income using the Backpropagation Algorithm. From the previous description, the author concludes that from the results of the study with the best architecture experiments, namely 12-10-1 to predict sales growth at the Artha Water Store in 2024, it shows an accuracy result of 92%, MSE training of 0.06031588, that there is a significant difference, in other words, sales growth at the Artha Water Store will increase in 2024. With a total sales result of basic necessities at the Artha Water Store for 2024 of IDR 336,930,000.
References
H. Jaya, Sabran, M. M. Idris, Y. A. Djawad, A. Ilham, and A. S. Ahmar, Kecerdasan Buatan. 2018.
H. Khodijah, “Jurnal JPILKOM ( Jurnal Penelitian Ilmu Komputer ) Implementasi Jaringan Saraf Tiruan Untuk Memprediksi Penjualan Sepeda Motor Listrik,” vol. 2, no. 1, 2024.
A. Ahmad, P. M. Putri, W. Alifah, and I. Gunawan, “Analisis jaringan syaraf tiruan metode backpropogation dalam memprediksi ketersediaan komoditas beras berdasarkan provinsi di indonesia,” RESISTOR, vol. 2, no. 1, pp. 4–16, 2019.
D. Trianda and A. Rahim Damanik, “Perkiraan Harga Cabai 2023-2024 dengan Penerapan Metode Backpropagation di Kota Singkawang,” J. JISIILKOM (Jurnal Inov. Sist. Inf. Ilmu Komputer), vol. 2, no. 1, pp. 12–23, 2024, [Online]. Available: https://jisiilkom.org/index.php/journal/article/view/20
A. Fahrezi, I. Saputra, and A. F. Siregar, “Pengenalan pola bunga berbasis citra menggunakan jaringan saraf tiruan dengan algoritma,” J. Ilm. Pendidik. Dasar, vol. 09, pp. 365–373, 2024.
L. Sinaga, E. Irawan, and W. Saputra, “Penerapan Jaringan Saraf Tiruan Metode Backpropogation Dalam Memprediksi Distribusi Air Pada PDAM Tirtauli Kota Pematangsiantar,” vol. 2, pp. 161–168, 2020.
R. S. R. Aritonang, I. Saputra, and A. F. Siregar, “IMPLEMENTASI JARINGAN SARAF TIRUAN UNTUK MEMPREDIKSI TINGKAT PRODUKSI JAGUNG GILING MENGGUNAKAN METODE BACKPROPAGATION (STUDI KASUS: MIKRA MAKMUR BERSAMA),” Pendas J. Ilm. Pendidik. Dasar, vol. 9, no. 4, pp. 37–48, 2024.
W. Saputra, T. Tulus, M. Zarlis, R. W. Sembiring, and D. Hartama, “Analysis Resilient Algorithm on Artificial Neural Network Backpropagation,” J. Phys. Conf. Ser., vol. 930, no. 1, 2017, doi: 10.1088/1742-6596/930/1/012035.
R. N. Putri and D. Setiawan, “PROTOTIPE PAKAN AYAMOTOMATIS MENGGUNAKAN METODE,” vol. 2, no. 1, 2018.
H. Pratiwi and K. et al Harianto, “Perbandingan Algoritma ELM Dan Backpropagation Terhadap Prestasi Akademik Mahasiswa,” vol. 3, no. September, pp. 282–294, 2019.
R. E. Pranata, I. Gunawan, and Sumarno, “Algoritma Backpropagation Dalam Melakukan Estimasi Penjualan Beras Pada CV Hariara Pematangsiantar,” 2021.
M. Syafiq, D. Hartama, I. O. Kirana, I. Gunawan, and A. Wanto, “Prediksi Jumlah Penjualan Produk di PT Ramayana Pematangsiantar Menggunakan Metode JST Backpropagation,” 2020. doi: 10.30865/jurikom.v7i1.1963.
D. P. Putra, S. A. Siregar, S. R. Fadillah, and Z. K. Ningtyas, “PERAMALAN PENJUALAN MOBIL DENGAN MENERAPKAN METODE SINGLE MOVING AVERAGE DAN SINGLE EXPONENTIAL,” J. Pariwisata, Bisnis Digit. dan Manaj., vol. 03, no. 2, pp. 81–86, 2024.
A. Kusumaningtyas, I. Ruwana, and S. A. Sari, “ANALISIS PERAMALAN PENJUALAN PADA UMKM GIPANG,” vol. 7, no. 2, pp. 467–471, 2024.
Rosidin, R. Novianti, K. P. Ningsih, D. Haryadi, G. Chrisnawati, and N. Anripa, “Peran Kecerdasan Buatan Dalam Pengembangan Sistem Otomatisasi Proses Bisnis,” J. Rev. Pendidik. dan Pengajaran, vol. 7, pp. 9320–9329, 2024.
C. Chairati, N. Awalia, B. M. Jamaluddin, A. B. Kaswar, and Sasmita, “KLASIFIKASI RASA BUAH SALAK BERDASARKAN WARNA DAN BENTUK MENGGUNAKAN METODE JARINGAN SARAF TIRUAN BERBASIS PENGOLAHAN CITRA DIGITAL,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 3, pp. 1226–1235, 2024.
D. Miftahul, J. Musdar, N. S. Eriyani, S. Azis, A. B. Kaswar, and S. Sasmita, “Implementasi jaringan saraf tiruan backpropagation untuk klasifikasi tingkat kesegaran wortel berbasis pengolahan citra digital disertai operasi morfologi,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 9, no. 3, pp. 1518–1533, 2024.
Muhammad Thoriq, A. E. Syaputra, and Y. S. Eirlangga, “Prediksi Peningkatan Kunjungan Pasien Dimasa Mendatang Mengunakan Jaringan Saraf Tiruan Backpropagation,” J. Fasilkom, vol. 14, no. 1, pp. 34–40, 2024, doi: 10.37859/jf.v14i1.6068.
R. H. Pranata and L. Hakim, “Penerapan Algoritma Jaringan Syaraf Tiruan Untuk Memprediksi Harga Tiket Pesawat,” J. Sist. Komput. Musirawas, vol. 3, no. 2, p. 122, 2018, doi: 10.32767/jusikom.v3i2.334.
N. Nafi’iyah, “Perbandingan Regresi Linear , Backpropagation Dan Fuzzy Mamdani Dalam Prediksi Harga Emas,” Semin. Nas. Inov. dan Apl. Teknol. di Ind., pp. 291–296, 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dwi Safitri Ramadhani, Abdul Ghani Ardiansyah, Damar Arya Prayoga, Riko ILham Nandika, Victor Asido Elyakim P

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 The authors. Published by Yayasan Literasi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The author(s) whose article is published in the JOMLAI journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JOMLAI, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (JOMLAI: Journal of Machine Learning and Artificial Intelligence).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JOMLAI will not be held responsible for anything that may arise because of the writer's internal dispute. JOMLAI will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JOMLAI allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JOMLAI to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published



















