Strategi Retensi Nasabah Perbankan Lokal Berbasis Machine Learning: Analisis Perbandingan Algoritma Klasifikasi dan Teknik Resampling

Authors

  • Ravensca Matatula Universitas Kristen Indonesia Maluku
  • Marchello Gefan Salenussa Universitas Kristen Indonesia Maluku
  • Marvelous Marvin Riyoly Universitas Kristen Indonesia Maluku

DOI:

https://doi.org/10.55123/jumintal.v4i2.7090

Keywords:

Loyality Prediction, Machine Learning, Decision Tree, Random Forest, Logistic Regression

Abstract

Customer retention has become an increasingly important strategic challenge for local banking institutions amid intensifying competition and the acceleration of digital transformation, making an understanding of customer loyalty patterns essential for designing effective and data-driven retention strategies. This study aims to analyze and compare the performance of machine learning algorithms in predicting customer loyalty in a local banking context, as well as to evaluate the impact of class imbalance handling techniques on model performance. Three classification algorithms—Decision Tree, Random Forest, and Logistic Regression—are employed in this study, with methodological stages including data preprocessing, model development, and performance evaluation. To address class imbalance in customer data, three approaches are applied, namely class weight adjustment, up sampling, and down sampling. Model performance is evaluated using the F1-Score and the Area Under the Receiver Operating Characteristic Curve (AUC-ROC). The results indicate that the Random Forest algorithm combined with the up sampling technique demonstrates the most consistent performance compared to the other algorithms tested, particularly in handling the minority class. The model achieves an F1-Score of 60% and an AUC-ROC value of 84%, indicating a good balance between precision and recall as well as adequate class discrimination capability. These findings suggest that ensemble-based machine learning models, supported by appropriate class imbalance handling techniques, can serve as effective decision-support tools for customer retention strategies in the context of local banking.

Downloads

Download data is not yet available.

References

Admanegara, R. C., & Handayani, W. (2024). Customer Churn Analysis Using Machine Learning to Improve Customer Retention on Vissie Net. 12(09), 7379–7387. https://doi.org/10.18535/ijsrm/v12i09.em05

Azmi, A. F. (2024). Prediksi Churn Nasabah Bank Menggunakan Klasifikasi Random Forest Dan Decision Tree Dengan Evaluasi Confusion Matrix. Komputa : Jurnal Ilmiah Komputer Dan Informatika, 13(1), 111–119. https://ojs.unikom.ac.id/index.php/komputa/article/view/12639.

Guliyev, H., & Yerdelen Tatoğlu, F. (2021). Customer churn analysis in banking sector: Evidence from explainable machine learning models. Journal of Applied Microeconometrics, 1(2), 85–99. https://doi.org/10.53753/jame.1.2.03

Harsiti, Muttaqin, Z., & Srihartini, E. (2022). Penerapan Metode Regresi Linier Sederhana Untuk Prediksi Persediaan Obat Jenis Tablet. JSiI (Jurnal Sistem Informasi), 9(1), 12–16. https://doi.org/10.30656/jsii.v9i1.4426

Marlina Haiza, Elmayati, Zulius Antoni, & Wijaya Harma Oktafia Lingga. (2023). Penerapan Algoritma Random Forest Dalam Klasifikasi Penjurusan Di SMA Negeri Tugumulyo. Penerapan Kecerdasan Buatan, 4(2), 138–143.

Nasrullah, A. H. (2021). Implementasi Algoritma Decision Tree Untuk Klasifikasi Produk Laris. Jurnal Ilmiah Ilmu Komputer, 7(2), 45–51. https://doi.org/10.35329/jiik.v7i2.203

Suci Amaliah, Nusrang, M., & Aswi, A. (2022). Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(3), 121–127. https://doi.org/10.35580/variansiunm31.

Syawaludin, M. A., & Hidayat, R. (2024). Prediksi Churn Pelanggan

Fawcett, T. (2006). An Introduction to ROC Analysis. Pattern Recognition Letters, 27(8). https://doi.org/10.1016/j.patrec.2005.10.010

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

Moro, S., Cortez, P. & Rita, P. (2015). A Data-driven Approach to Predicting Bank Telemarketing Success. Decision Support Systems. https://doi.org/10.1016/j.dss.2014.03.001

Chawla, N. et al. (2002). SMOTE: Synthetic Minority Over-sampling Technique. JAIR, 16, 321–357. https://doi.org/10.1613/jair.953.

He, H. & Garcia, E. (2009). Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2008.239

Guliyev, H., Tatoğlu, F. Y. (2021). Customer churn analysis in banking sector: Evidence from explainable machine learning models. JAME E-ISSN:2791-7401 Volume: 1, Issue 2, 2021

Bahnsen, A.C., Aouada, D., Ottersten. B. (2015). Anovel cost-sensitive framework for customer churn predictive modeling. DecisionAnalytics (2015) 2:5 a SpringerOpen Journal. DOI10.1186/s40165-015-0014-6

Ren, H. (2024). Machine Learning-Based Prediction of Customer Churn Risk in E-commerce. Proceedings of the 3rd International Conference on Financial Technology and Business Analysis DOI: 10.54254/2754-1169/153/2024.19473.

Ehsani, F. (2022). Customer churn prediction from Internet banking transactions data using an ensemble metaclassifer algorithm. Research Square preprint. https://doi.org/10.21203/rs.3.rs-1630808/v1

Moro, S., Cortez, P. & Rita, P. (2015). A Data-driven Approach to Predicting Bank Telemarketing Success. Decision Support Systems. https://doi.org/10.1016/j.dss.2014.03.001.

Verbeke, W., Martens, D., & Baesens, B. (2012). Social network analysis for customer churn prediction. Applied Soft Computing 14:431–446 https://doi.org/10.1016/j.asoc.2013.09.017

Idris, A., Khan, A., & Lee, Y. S. (2019). Intelligent churn prediction model using boosted trees. IEEE Conference on Computer Applications (ICCA). DOI:10.1109/ICCA51723.2023.10181933

Amin, A., Al-Obeidat, F., Shah, B., et al. (2019). Customer churn prediction in telecom using data certainty. https://doi.org/10.1016/j.jbusres.2018.03.003.

Downloads

Published

2025-11-15

How to Cite

Ravensca Matatula, Marchello Gefan Salenussa, & Riyoly, M. M. (2025). Strategi Retensi Nasabah Perbankan Lokal Berbasis Machine Learning: Analisis Perbandingan Algoritma Klasifikasi dan Teknik Resampling. JUMINTAL: Jurnal Manajemen Informatika Dan Bisnis Digital, 4(2), 409–420. https://doi.org/10.55123/jumintal.v4i2.7090