Analisa Proses Peminjaman Buku pada Perpustakaan dengan Algoritma Association Rule
DOI:
https://doi.org/10.55123/jumintal.v4i1.5769Kata Kunci:
Data Mining, Association Rule, Book Lending, Problem, Methods, ResultAbstrak
Utilization of data in the information system to support decision-making activities, is not enough to rely on operational data alone, data analysis is needed to explore the potential of existing information. Decision makers try to utilize the existing data warehouse to explore useful information to help make decisions, This encourages the emergence of the Library is to have a fairly large collection of books ranging from textbooks to encyclopedias. Library visitors are also quite a lot. The Association Rule method is one technique for searching for data that is simultaneous in one transaction, where the book loan data in the database will be formed into one item set of up to 3 items. This library has a fairly large collection of books ranging from textbooks to encyclopedias. Library visitors are also quite a lot. Visitors who in this case are students often borrow books when there are assignments from lecturers and when they want to compile a final assignment or thesis.
Unduhan
Referensi
S. Aulia Miranda, F. Fahrullah, and D. Kurniawan, “Implementasi Association Rule Dalam Menganalisis Data Penjualan Sheshop dengan Menggunakan Algoritma Apriori,” Metik J., vol. 6, no. 1, pp. 30–36, 2022, doi: 10.47002/metik.v6i1.342.
E. - and S. P. Tamba, “Penerapan Data Mining Algoritma Apriori Dalam Menentukan Stok Bahan Baku Pada Restoran Nelayan Menggunakan Metode Association Rule,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 97–102, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2407.
A. Arima, D. A. N. Algoritma, and M. Carlo, “PERBANDINGAN METODE AUTOREGRESIF INTEGRATED MOVING,” vol. 4307, no. 4, pp. 1984–1992, 2024.
A. Somantri and M. F. Muttaqin, “Optimasi Manajemen Stok Barang Berbasis Prediksi pada Perusahaan Konfeksi dengan Algoritma Single Moving Average,” vol. 9, no. 2, pp. 105–113, 2024.
V. Sri, Y. Rahmawati, I. R. Setiawan, U. M. Sukabumi, and J. Barat, “ARIMA ( AUTOREGRESSIVE INTEGRATED MOVING AVERAGE ) SEBAGAI ALGORITMA PREDIKSI FAKTOR PEMBATALAN HEREGISTRASI MAHASISWA BARU DI,” vol. 18, no. 2, 2024.
E. Ndruru and R. Limbong, “Implementasi Data Mining Dalam Pengelompokan Jurusan yang Diminati Siswa SMK Negeri 1 Lolowa’u menggunakan Metode Clustering,” MEANS (Media Inf. Anal. dan Sist., vol. 3, no. 2, pp. 107–113, 2018, [Online]. Available: http://ejournal.ust.ac.id/index.php/Jurnal_Means/article/view/273/pdfdssdx11
N. Wandi, R. A. Hendrawan, and A. Mukhlason, “Pengembangan Sistem Rekomendasi Penelusuran Buku dengan Penggalian Association Rule Menggunakan Algoritma Apriori,” J. Tek. ITS, vol. 1, pp. 1–5, 2012.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Eferoni Ndruru

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.



















