Digital Learning Management Systems for Maritime Decarbonization Training: An Adaptive Framework for Seafarer Competency Development
DOI:
https://doi.org/10.55123/jumintal.v4i1.6177Kata Kunci:
Adaptive Learning, Maritime Education, Decarbonization Training, Competency Development, Learning AnalyticsAbstrak
The International Maritime Organization's 2023 Greenhouse Gas Strategy necessitates rapid workforce transformation to train 1.2 million seafarers in decarbonization competencies by 2050. This qualitative research investigates adaptive digital learning management systems for maritime decarbonization training through analysis of perspectives from five maritime education professionals with specialized expertise in green shipping technologies and IMO-based learning frameworks. The study employs descriptive analysis to examine participant insights regarding intelligent tutoring systems, predictive learning models, and digital assessment frameworks. Results demonstrate strong support for adaptive learning implementation, with an overall effectiveness score of 4.2 out of 5.0 and projected competency development improvements of 63.0% across domains. Thematic analysis reveals five critical dimensions: personalization imperative, real-time assessment integration, scalability solutions, implementation complexity, and regulatory alignment confidence. Adaptive learning systems can potentially train 240,000 seafarers annually compared to 2,400 through traditional methods while maintaining regulatory compliance. Findings contribute to adaptive learning theory and provide implications for maritime institutions.
Unduhan
Referensi
Al-Mamun, M. A., Liu, Q., Chowdhury, S. R., Uddin, M. S., Nazrul, K. M. S., & Sultana, R. (2021). Stock assessment for seven fish species using the LBB method from the northeastern tip of the Bay of Bengal, Bangladesh. Sustainability, 13(3), 1561. https://doi.org/10.3390/su13031561
Amorim, L. M., Costa, J. L., Costa, A. C., Botelho, A. Z., & Torres, P. (2024). Unveiling microplastic abundance and distribution in an oceanic island: Offshore depository or local pollution indicator. Sustainability, 16(10), 4103. https://doi.org/10.3390/su16104103
Barua, S., Liu, Q., Alam, M. S., Schneider, P., Chowdhury, S. K., & Mozumder, M. M. H. (2023). Assessment of three major shrimp stocks in Bangladesh marine waters using both length-based and catch-based approaches. Sustainability, 15(17), 12835. https://doi.org/10.3390/su151712835
Bilal, A., Xiao-ping, L., Nanli, Z., Sharma, R., & Jahanger, A. (2021). Green technology innovation, globalization, and CO2 emissions: Recent insights from the OBOR economies. Sustainability, 14(1), 236. https://doi.org/10.3390/su14010236
Brown, C. J., Taylor, W. W., Wabnitz, C. C. C., & Connolly, R. M. (2020). Dependency of Queensland and the Great Barrier Reef's tropical fisheries on reef-associated fish. Scientific Reports, 10, 17329. https://doi.org/10.1038/s41598-020-74652-2
Caldas, P., Pedro, M. I., & Marques, R. C. (2024). An assessment of container seaport efficiency determinants. Sustainability, 16(11), 4427. https://doi.org/10.3390/su16114427
Caldeirinha, V., Felício, J. A., Pinho, T., & Rodrigues, R. (2024). Fuzzy-set QCA on performance and sustainability determinants of ports supporting floating offshore wind farms. Sustainability, 16(7), 2947. https://doi.org/10.3390/su16072947
Chae, G.-Y., An, S.-H., & Lee, C.-Y. (2021). Demand forecasting for liquified natural gas bunkering by country and region using meta-analysis and artificial intelligence. Sustainability, 13(16), 9058. https://doi.org/10.3390/su13169058
Cianflone, G., Vespasiano, G., Tolomei, C., De Rosa, R., Dominici, R., Apollaro, C., Walraevens, K., & Polemio, M. (2022). Different ground subsidence contributions revealed by integrated discussion of Sentinel-1 datasets, well discharge, stratigraphical and geomorphological data: The case of the Gioia Tauro coastal plain (Southern Italy). Sustainability, 14(5), 2926. https://doi.org/10.3390/su14052926
Du, S., Zhang, H. S., & Kong, Y. (2023). Sustainability implications of the Arctic shipping route for Shanghai port logistics in the post-pandemic era. Sustainability, 15(22), 16017. https://doi.org/10.3390/su152216017
Fonseca, A., Zina, V., Duarte, G., Aguiar, F. C., Rodríguez-González, P. M., Ferreira, M. T., & Fernandes, M. R. (2021). Riparian ecological infrastructures: Potential for biodiversity-related ecosystem services in Mediterranean human-dominated landscapes. Sustainability, 13(19), 10508. https://doi.org/10.3390/su131910508
Hilmi, N., Farahmand, S., Lam, V. W. Y., Cinar, M., Safa, A., & Gilloteaux, J. (2021). The impacts of environmental and socio-economic risks on the fisheries in the Mediterranean region. Sustainability, 13(19), 10670. https://doi.org/10.3390/su131910670
Jan, S., Chang, M.-H., Yang, Y. J., Sui, C.-H., Cheng, Y., Yeh, Y.-Y., & Lee, C.-W. (2021). Mooring observed intraseasonal oscillations in the central South China Sea during summer monsoon season. Scientific Reports, 11, 13795. https://doi.org/10.1038/s41598-021-93219-3
Keen, E. M., Pilkington, J. F., O'Mahony, É., Thompson, K.-L., Hendricks, B., Robinson, N., Dundas, A., Nichol, L., Alidina, H. M., Meuter, H., Picard, C. R., & Wray, J. (2021). Fin whales of the Great Bear Rainforest: Balaenoptera physalus velifera in a Canadian Pacific fjord system. PLoS ONE, 16(8), e0256815. https://doi.org/10.1371/journal.pone.0256815
Kim, S.-K., Choi, S., & Kim, C. (2021). The framework for measuring port resilience in Korean port case. Sustainability, 13(21), 11883. https://doi.org/10.3390/su132111883
Lacetera, P., Mason, S. J., Tixier, P., & Arnould, J. P. Y. (2023). Using ecotourism boats for estimating the abundance of a bottlenose dolphin population in south-eastern Australia. PLoS ONE, 18(8), e0289592. https://doi.org/10.1371/journal.pone.0289592
Liao, Y.-H., & Lee, H.-S. (2023). Using a directional distance function to measure the environmental efficiency of international liner shipping companies and assess regulatory impact. Sustainability, 15(4), 3821. https://doi.org/10.3390/su15043821
Lin, X., & Fu, H. (2022). Spatial-temporal evolution and driving forces of cultivated land based on the PLUS model: A case study of Haikou City, 1980–2020. Sustainability, 14(21), 14284. https://doi.org/10.3390/su142114284
Mondal, S., Ray, A., Boas, M., Navus, S. G., Lee, M.-A., Dey, S., & Barman, K. K. (2024). Can the delayed effects of climatic oscillations have a greater influence on global fisheries compared to their immediate effects? PLoS ONE, 19(7), e0307644. https://doi.org/10.1371/journal.pone.0307644
Mwendapole, M. J., & Jin, Z. (2021). Evaluation of seaport service quality in Tanzania: From the Dar Es Salaam seaport perspective. Sustainability, 13(18), 10076. https://doi.org/10.3390/su131810076
Paridaens, H., & Notteboom, T. (2021). National integrated maritime policies (IMP): Vision formulation, regional embeddedness, and institutional attributes for effective policy integration. Sustainability, 13(17), 9557. https://doi.org/10.3390/su13179557
Qi, J., Wang, S., & Zheng, J. (2022). Shore power deployment problem—A case study of a Chinese container shipping network. Sustainability, 14(11), 6928. https://doi.org/10.3390/su14116928
Relano, V., & Pauly, D. (2022). Philopatry as a tool to define tentative closed migration cycles and conservation areas for large pelagic fishes in the Pacific. Sustainability, 14(9), 5577. https://doi.org/10.3390/su14095577
Shaika, N. A., Alhomaidi, E., Sarker, M. M., Nur, A. A., Sadat, M. A., Awal, S., Mostafa, G., Hasan, S. J., Mahmud, Y., & Khan, S. (2023). Winter bloom of marine cyanobacterium, Trichodesmium erythraeum and its relation to environmental factors. Sustainability, 15(2), 1311. https://doi.org/10.3390/su15021311
Sunny, A. R., Mithun, M. H., Prodhan, S. H., Ashrafuzzaman, M., Rahman, S. M. A., Billah, M. M., Hussain, M., Ahmed, K. J., Sazzad, S. A., Alam, M. T., Rashid, A., & Hossain, M. M. (2021). Fisheries in the context of attaining sustainable development goals (SDGs) in Bangladesh: COVID-19 impacts and future prospects. Sustainability, 13(17), 9912. https://doi.org/10.3390/su13179912
Wilson, T., Cooley, S. R., Tai, T. C., Cheung, W. W. L., & Tyedmers, P. (2020). Potential socioeconomic impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries. PLoS ONE, 15(1), e0226544. https://doi.org/10.1371/
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Tri Kismantoro, Ronald Simanjuntak , Muhammad Nurdin, Nafi Almuzani, Ardiansyah Ardiansyah

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.



















