Support Vector Machine sebagai Sistem Pendukung Keputusan Pemilihan Jurusan Berbasis Website pada SMK NU Hasyim Asy’ari Tarub
DOI:
https://doi.org/10.55123/jumintal.v4i2.6850Kata Kunci:
Support Vector Machine, Particle Swarm Optimization, Classification, Major Recommendation, Decision Support SystemAbstrak
The process of determining students’ majors in vocational high schools plays a crucial role in shaping their academic development and future career readiness. However, manual decision-making often leads to inaccuracies due to subjective judgments and limited data analysis. This study aims to develop a more accurate and objective major classification model by integrating the Support Vector Machine (SVM) method with Particle Swarm Optimization (PSO). The dataset consists of 292 student records, including academic scores in Mathematics, Indonesian Language, English, and Science, as well as interest questionnaire results. Initial testing using SVM produced an accuracy of 79.76%, indicating that the model’s parameters were not yet optimal. PSO was then applied to optimize the key parameters C and Gamma, resulting in a significant improvement in model performance. The optimized SVM–PSO model achieved an accuracy of 97.20%, with a precision of 96.33%, recall of 95.22%, and an F1-score of 95.77%. These results demonstrate the capability of PSO to enhance SVM’s pattern-recognition performance and address class imbalance issues, particularly for minority majors. Overall, the integration of SVM and PSO is proven to be effective as a Decision Support System, providing schools with accurate, data-driven recommendations for student major placement.
Unduhan
Referensi
A Man Kumar (2018) C dan Gamma dalam SVM. A | oleh A Man Kumar | Medium. Available at: https://medium.com/@myselfaman12345/c-and-gamma-in-svm-e6cee48626be (Accessed: June 2, 2025).
Afifudin, M., Junaedi, A., Nugroho, A., Fithriyah, I., Pembangunan Nasional Veteran Jawa Timur, U., Rungkut Madya No, J., Anyar, G., & Kesehatan Jiwa RSUD Soetomo, I. (2024). GWO-SVM: AN APPROACH TO IMPROVING SVM PERFORMANCE USING GREY WOLF OPTIMIZER IN INTELLECTUAL DISABILITY CLASSIFICATION. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3S1), 2830–7062. https://doi.org/10.23960/JITET.V12I3S1.5359
Badan Pusat Statistik (2024) Pengangguran Terbuka Menurut Pendidikan Tertinggi yang Ditamatkan 1986 - 2024 - Tabel Statistik - Badan Pusat Statistik Indonesia. Available at: https://www.bps.go.id/id/statistics-table/1/OTcyIzE=/pengangguran-terbuka-menurut-pendidikan-tertinggi-yang-ditamatkan-1986---2024.html (Accessed: January 7, 2025).
Batista, G. et al. (2019) “Illustration of how PSO-SVM hybrid training works | Download Scientific Diagram,” Multimedia Tools and Applications, 78. Available at: https://www.researchgate.net/figure/Illustration-of-how-PSO-SVM-hybrid-training-works_fig4_334664872 (Accessed: November 16, 2025).
Bumbungan, S. (2023) “Penerapan Particle Swarm Optimization (PSO) dalam Pemilihan Parameter Secara Otomatis pada Support Vector Machine (SVM) untuk Prediksi Kelulusan Mahasiswa Politeknik Amamapare Timika,” Jurnal Teknik AMATA, 04(1).
Ernawati, S. et al. (2021) “Comparative analysis of naïve bayes and knn on prediction of forex price movements for gbp/usd currency at time frame daily,” Journal of Physics: Conference Series, 1810(1), p. 012012. Available at: https://doi.org/10.1088/1742-6596/1810/1/012012.
Handayanto, A. et al. (2019) Analisis dan Penerapan Algoritma Support Vector Machine (SVM) dalam Data Mining untuk Menunjang Strategi Promosi (Analysis and Application of Algorithm Support Vector Machine (SVM) in Data Mining to Support Promotional Strategies).
Hasfi, A. (2016) “Klasifikasi Kinerja Akademik Mahasiswa Menggunakan Metode Pso-Svm.”
Jainvidip (2024) Understanding Support Vector Machines (SVMs) | by Jainvidip | Medium, Medium. Available at: https://medium.com/@jainvidip/understanding-support-vector-machines-svms-1f7c78bad934 (Accessed: January 19, 2025).
MADE AGUS, D. (2024) “PERANCANGAN MESIN KLASIFIKASI MENGGUNAKAN PARTICLE SWARM OPTIMIZATION.”
Manakkadu, S., & Dutta, S. (2024). Ant Colony Optimization based Support Vector Machine for Improved Classification of Unbalanced Datasets. Procedia Computer Science, 237, 586–593. https://doi.org/10.1016/J.PROCS.2024.05.143
Maulanii, A.P. (2024) SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN JURUSAN SEKOLAH MENENGAH KEJURUAN MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING (SAW) DI SMKS BHAKTI PRAJA TALANG.
Muis, I.A. and Affandes, M. (2015) “Penerapan Metode Support Vector Machine (SVM) Menggunakan Kernel Radial Basis Function (RBF) Pada Klasifikasi Tweet,” Jurnal Sains, Teknologi dan Industri, 12(2), pp. 189–197. Available at: http://ejournal.uin-suska.ac.id/index.php/sitekin.
Pendidikan, K. and Teknologi Tahun, dan (no date) “Panduan Pemilihan Mata Pelajaran Pilihan di SMA/MA/Bentuk Lain yang Sederajat.”
Rahma Kurniawan (2023) SISTEM PENDUKUNG KEPUTUSAN (Desicion Support System), Universitas Riau. Available at: https://rahmadkurniawan.staff.unri.ac.id/files/2023/09/PERTEMUAN-2.pdf (Accessed: January 25, 2025).
Rokhmah, Z. et al. (2021) Sistem Pendukung Keputusan Penentuan Jurusan Dengan Menggunakan Metode SAW Di SMK Negeri 1 Merangin.
Saprudin, S. (Saprudin) (2017) “Penerapan Particle Swarm Optimization (PSO) untuk Klasifikasi dan Analisis Kredit dengan Menggunakan Algoritma C4.5,” Jurnal Informatika Universitas Pamulang, 2(4), pp. 214–219. Available at: https://doi.org/10.32493/INFORMATIKA.V2I4.1488.
Schunk, D.H. and Zimmerman, B.J. (2012) “Motivation and self-regulated learning: Theory, research, and applications,” Motivation and Self-Regulated Learning: Theory, Research, and Applications, pp. 1–417. Available at: https://doi.org/10.4324/9780203831076.
Sidharth (2022) Kernel RBF dalam SVM: Panduan Lengkap - PyCodeMates, PyCodeMates. Available at: https://www.pycodemates.com/2022/10/the-rbf-kernel-in-svm-complete-guide.html (Accessed: January 19, 2025).
Zainuddin, Moh. (2018) “METODE KLASIFIKASI BERBASIS PARTICLE SWARM OPTIMIZATION (PSO) UNTUK PREDIKSI KELULUSAN TEPAT WAKTU MAHASISWA,” Jurnal Ilmiah Teknologi Informasi Asia, 13(1), p. 1. Available at: https://doi.org/10.32815/JITIKA.V13I1.247.
Zhang, S. et al. (2022) “Identification of Diagnostic Markers for Breast Cancer Based on Differential Gene Expression and Pathway Network,” Frontiers in Cell and Developmental Biology, 9, p. 811585. Available at: https://doi.org/10.3389/FCELL.2021.811585/BIBTEX.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Rizal Nurzuli, Fadilah Falah Syifa, Robiatul Adawiyah

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.



















