INTEGRASI SENSOR KESUBURAN TANAH BERBASIS MODBUS RS485 PADA SISTEM MONITORING PERTANIAN PRESISI BERBASIS DATA

Authors

  • Ilham Ariawan Al Ashar Ilham Universitas Sains Al-Qur'an
  • Hermawan Universitas Sains Al-Qur'an
  • Muslim Hidayat Universitas Sains Al-Qur'an
  • Jenny Febrina Andini Universitas Sains Al-Qur'an
  • Muhamad Fuat Asnawi Universitas Sains Al-Qur'an

DOI:

https://doi.org/10.55123/storage.v4i4.6585

Keywords:

Modbus RS485, sensor tanah, HMI, smart farming, edge computing

Abstract

Penelitian ini bertujuan untuk mengembangkan dan menguji sistem monitoring kesuburan tanah berbasis Modbus RS485 yang mampu beroperasi secara mandiri tanpa koneksi internet, sebagai solusi offline smart farming di wilayah dengan keterbatasan jaringan. Sistem dirancang menggunakan sensor multiparameter 7-in-1 yang mendeteksi pH, EC, NPK, suhu, dan kelembapan tanah, terintegrasi dengan Human Machine Interface (HMI) untuk menampilkan data secara real-time. Proses akuisisi dan transmisi data dilakukan melalui komunikasi serial industri RS485, memungkinkan pengiriman data hingga 60 meter dengan tingkat stabilitas tinggi. Hasil pengujian menunjukkan sistem mampu mencapai akurasi pengukuran sebesar 96,8% dengan konsumsi daya hanya 1,8 W, sehingga efisien untuk aplikasi lapangan. Secara teknis, sistem ini menunjukkan potensi integrasi embedded system, edge computing, dan komunikasi data industri dalam mendukung digitalisasi pertanian presisi. Pendekatan ini relevan bagi penerapan smart agriculture di daerah rural tanpa infrastruktur jaringan, sekaligus mendukung arah kebijakan Transformasi Pertanian Digital Nasional. Hasil penelitian ini diharapkan menjadi dasar bagi pengembangan arsitektur offline digital agriculture yang efisien, reliabel, dan berkelanjutan untuk monitoring kesuburan tanah berbasis data lokal

Downloads

Download data is not yet available.

References

Băjenaru, V. D., Istrițeanu, S. E., & Ancuța, P. N. (2025). Autonomous, Multisensory Soil Monitoring System. AgriEngineering, 7(1). https://doi.org/10.3390/agriengineering7010018

Braunger, M. L., Neto, M. P., Kirsanov, D., Fier, I., Amaral, L. R., Shimizu, F. M., Correa, D. S., Paulovich, F. V., Legin, A., Oliveira, O. N., & Riul, A. (2024). Analysis of Macronutrients in Soil Using Impedimetric Multisensor Arrays. ACS Omega, 9(31), 33949–33958. https://doi.org/10.1021/acsomega.4c04452

Chen, X., Zhang, H., & Wong, C. U. I. (2025). Dynamic Monitoring and Precision Fertilization Decision System for Agricultural Soil Nutrients Using UAV Remote Sensing and GIS. Agriculture, 15(15), 1627. https://doi.org/10.3390/agriculture15151627

Dirjen Horti Kementan. (2024). Angka Tetap Hortikultura Tahun 2024. Direktorat Jenderal Hortikultura Kementerian Pertanian, 329.

Elaete, S., Ilukor, J., Isoto, R. E., Moruleng, A., & Opolot, H. N. (2025). Comparing indigenous and scientific (Palin test) soil fertility assessment approaches for better soil health monitoring, management, and farm decision-making in Uganda. Discover Soil, 2(1). https://doi.org/10.1007/s44378-025-00058-z

FAO. (2018). The future of food and agriculture – Alternative pathways to 2050. http://www.fao.org/3/I8429EN/i8429en.pdf

Islam, M. R., Oliullah, K., Kabir, M. M., Alom, M., & Mridha, M. F. (2023). Machine learning enabled IoT system for soil nutrients monitoring and crop recommendation. Journal of Agriculture and Food Research, 14(November), 100880. https://doi.org/10.1016/j.jafr.2023.100880

Pandey, V., Das, R., & Biswas, D. (2025). AgroSense: An Integrated Deep Learning System for Crop Recommendation via Soil Image Analysis and Nutrient Profiling. 1–23. http://arxiv.org/abs/2509.01344

Sharafat, S., Kabya, N. Das, Emu, R. I., Ahmed, M. U., Onik, J. C., Islam, M. A., & Khan, R. (2025). An IoT-enabled AI system for real-time crop prediction using soil and weather data in precision agriculture. Smart Agricultural Technology, 12(March), 101263. https://doi.org/10.1016/j.atech.2025.101263

Sudjadi, M., & Effendi, S. (1991). Soil Fertility Constraints in Indonesia and Methods of Improvement.

Sulaeman, Y., Sutanto, E., Kasno, A., Sunandar, N., & Purwaningrahayu, R. D. (2024). Developing and Testing a Portable Soil Nutrient Detector in Irrigated and Rainfed Paddy Soils from Java, Indonesia. Computers, 13(8), 1–13. https://doi.org/10.3390/computers13080209

Suntoro, S., Herdiansyah, G., & Mujiyo, M. (2024). Nutrient status and soil fertility index as a basis for sustainable rice field management in Madiun Regency, Indonesia. Sains Tanah, 21(1), 22–31. https://doi.org/10.20961/stjssa.v21i1.73845

Tziolas, N., Tsakiridis, N., Chabrillat, S., Demattê, J. A. M., Ben-Dor, E., Gholizadeh, A., Zalidis, G., & van Wesemael, B. (2021). Earth observation data-driven cropland soil monitoring: A review. Remote Sensing, 13(21). https://doi.org/10.3390/rs13214439

Widanti, N., Alamsyah, A., Albus, A., Ikhsan, A. N., Lestari, S. W., Handini, W., & Raharjo, S. A. (2024). Design Smart Farming in Rice Field for Monitoring Soil Fertility and Pest Rate Using Internet of Things. Jurnal Penelitian Pendidikan IPA, 10(8), 5782–5788. https://doi.org/10.29303/jppipa.v10i8.8288

Downloads

Published

2025-11-30

Issue

Section

Articles