OPTIMASI MODEL PREDIKSI EXTREME GRADIENT BOOSTING DENGAN GENETIC ALGORITHM UNTUK PRODUKSI DAN PRODUKTIVITAS PADI
DOI:
https://doi.org/10.55123/storage.v4i4.6633Keywords:
Produksi Padi, Produktivitas Padi, Genetic Algorithm, XGBoost, GA-XGBoostAbstract
Produksi padi di Kabupaten Buleleng meningkat dari tahun 2021 hingga 2023, namun produktivitas justru menurun hingga 8%. Kondisi ini berpotensi mengganggu stabilitas pasokan beras di tengah pertumbuhan penduduk sebesar 4,59% per tahun. Diperlukan pendekatan prediktif berbasis kecerdasan buatan untuk memodelkan hubungan kompleks antar variabel pertanian. XGBoost dipilih karena kemampuannya dalam menangkap pola non-linear dan sering digunakan dalam analisis data pertanian, sementara Genetic Algorithm (GA) digunakan untuk menentukan kombinasi hiperparameter optimal guna meningkatkan performa model. Model XGBoost tanpa optimasi diterapkan sebagai pembanding untuk mengevaluasi efektivitas pendekatan hybrid. Hasil analisis menunjukkan bahwa optimasi hiperparameter berpengaruh signifikan terhadap hasil prediksi. Model GA-XGBoost menghasilkan tingkat kesalahan lebih rendah, dengan penurunan nilai MAPE sekitar 2,98% untuk prediksi produksi padi dan 0.21% untuk produktivitas dibandingkan dengan model standar atau default.
Downloads
References
Rahayu, P.I.R., Hidayatullah, M. and Hijrah, M. (2023) “Implementation Vector Autoregressive (Var) On Rice Production and Rice Productivity Data in Indonesia,” Jurnal Matematika, Statistika dan Komputasi, 19(3), pp. 580–592. https://doi.org/10.20956/j.v19i3.24881.
Tabassum, R. et al. (2024) “Machine learning-based prediction of scour depth evolution around spur dikes,” Journal of Hydroinformatics, 26(11), pp. 2815–2836. https://doi.org/10.2166/hydro.2024.160.
Swain, K.C., Singha, C. and Pradhan, B. (2024) “Estimating Total Rice Biomass and Crop Yield at Field Scale Using PlanetScope Imagery Through Hybrid Machine Learning Models,” Earth Systems and Environment, 8(4), pp. 1713–1731. https://doi.org/10.1007/s41748-024-00481-2.
Noorunnahar, M., Chowdhury, A.H. and Mila, F.A. (2023) “A tree based eXtreme Gradient Boosting (XGBoost) machine learning model to forecast the annual rice production in Bangladesh,” PLoS ONE, 18(3 March). https://doi.org/10.1371/journal.pone.0283452.
Dewi, N.P.N.P. et al. (2025) “Enhancing Diesel Backup Power Forecasting With LSTM, GRU, and Autoencoder-based Input Encoding,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 14(1), pp. 183–199. https://doi.org/10.23887/janapati.v14i1.92079.
Handayani Putri, D.P. et al. (2023) “Perbandingan Performansi Support Vector Machine (Svm) dan Backpropagation untuk Klasifikasi Studi Mahasiswa Undiksha,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), 9(3), p. 492. https://doi.org/10.26418/jp.v9i3.67843.
Pascima, I.B.N. and Putrama, I.M. (2021) “Forecasting foreign exchange rate using a combination of linear regression and flower pollination algorithm,” in Journal of Physics: Conference Series. IOP Publishing Ltd. https://doi.org/10.1088/1742-6596/1810/1/012021.
Putu Novita Puspa Dewi, N. et al. (2021) “OPTIMASI GENERAL REGRESSION NEURAL NETWORK DENGAN FRUIT FLY OPTIMIZATION ALGORITHM UNTUK PREDIKSI PEMAKAIAN ARUS LISTRIK PADA PENYULANG,” 18(1), pp. 1–12. https://journal.unpak.ac.id/index.php/komputasi
Dewi, N.P.N.P., Kertiasih, N.K. and Sintiari, N.L.D. (2022) “Modifikasi Fruit Fly Optimiziation Algorithm untuk Optimasi General Regression Neural Network pada Kasus Prediksi Time-Series,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 11(3), pp. 192–204. https://doi.org/10.23887/janapati.v11i3.54521.
Tran, T.N. and Nguyen, Q.D. (2024) “Research on the Influence of Genetic Algorithm Parameters on XGBoost in Load Forecasting,” Engineering, Technology and Applied Science Research, 14(6), pp. 18849–18854. https://doi.org/10.48084/etasr.8863.
Zhang, R. and Jia, H. (2021) “Production performance forecasting method based on multivariate time series and vector autoregressive machine learning model for waterflooding reservoirs,” Petroleum Exploration and Development, 48(1), pp. 201–211. https://doi.org/10.1016/S1876-3804(21)60016-2.
Jiang, P. et al. (2023) “Prediction Dynamics in Cotton Aphid Using Unmanned Aerial Vehicle Multispectral Images and Vegetation Indices,” IEEE Access, 11, pp. 5908–5918. Available at: https://doi.org/10.1109/ACCESS.2023.3235912
Aydin, M.R. and Gülsün, B. (2024) “Optimizing a Machine Learning Algorithm by Novel Metaheuristic Approach: Case Study in Forecasting.” Available at: https://doi.org/10.20944/preprints202411.0907.v1.
Dedy, I.P. et al. (2023) “Optimasi Parameter Support Vector Machine Dengan Algoritma Genetika Untuk Analisis Sentimen Pada Media Sosial Instagram.” Available at: https://doi.org/10.31598.
Samantaray, S., Sahoo, A. and Baliarsingh, F. (2024) “Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm,” Cleaner Water, 1. Available at: https://doi.org/10.1016/j.clwat.2024.100003
Fang, Z.G. et al. (2022) “Application of a data-driven XGBoost model for the prediction of COVID-19 in the USA: a time-series study,” BMJ Open, 12(7). Available at: https://doi.org/10.1136/bmjopen-2021-056685.
Rathod, S. et al. (2021) “Two-stage spatiotemporal time series modelling approach for rice yield prediction & advanced agroecosystem management,” Agronomy, 11(12). Available at: https://doi.org/10.3390/agronomy11122502.
Oukhouya, H. et al. (2024) “Forecasting International Stock Market Trends: XGBoost, LSTM, LSTM-XGBoost, And Backtesting XGBoost Models,” Statistics, Optimization and Information Computing, 12(1), pp. 200–209. Available at: https://doi.org/10.19139/soic-2310-5070-1822.
Li, J. et al. (2022) Application of XGBoost Algorithm in the Optimization of 2 Pollutant Concentration. Available at: https://ssrn.com/abstract=4029398.
Sriartha, I.P., Giyarsih, S.R. and Purnamawati, I.G.A. (2023) “Comparing the adaptive capacity of traditional irrigated rice fields farmers in urban and rural areas to climate change in Bali, Indonesia,” Cogent Social Sciences, 9(2). https://doi.org/10.1080/23311886.2023.2275936.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kadek Ardy Wirakusuma, Ni Putu Novita Puspa Dewi, Kadek Yota Ernanda Aryanto

This work is licensed under a Creative Commons Attribution 4.0 International License.



















