Diagnosis of Skin Diseases Using Artificial Neural Networks with Backpropagation Algorithm

Authors

  • Dony Jordan Pangomoan Sirait STIKOM Tunas Bangsa Pematangsiantar
  • Angga Priandi STIKOM Tunas Bangsa Pematangsiantar
  • Yemima Pepayosa Sembiring STIKOM Tunas Bangsa Pematangsiantar
  • Alyah Octafia STIKOM Tunas Bangsa Pematangsiantar
  • Victor Asido Elyakim P STIKOM Tunas Bangsa Pematangsiantar

DOI:

https://doi.org/10.55123/jomlai.v4i1.5643

Keywords:

Health , Backpropagation , Skin Disease , Artificial Neural Network , Diagnosis

Abstract

Skin health is a vital aspect as it functions as the body's primary protector from the external environment. Various skin diseases can arise due to infections, allergies, autoimmune disorders, or environmental factors, and often exhibit similar symptoms, making diagnosis difficult. Artificial intelligence technology, such as Artificial Neural Networks (ANN), offers an innovative solution for accurate diagnosis. One popular ANN method is Backpropagation, which updates network weights iteratively based on the errors produced. This research focuses on applying the Backpropagation algorithm to diagnose skin diseases based on patient symptoms. With a binary data-based system and training using Backpropagation, this system is expected to accurately map symptoms to types of skin diseases. The methodology involves problem identification , data collection (types of skin diseases and symptoms, encoded in binary), dataset and diagnosis rule formation , ANN design (input, hidden, and output layers) , and training and testing using binary data and one-hot encoding. The results indicate that the application of ANN with Backpropagation is effective in assisting the automatic diagnosis process for skin disease cases , achieving an accuracy of 90%. This demonstrates the significant potential of this method in automated medical expert systems.

References

R. Hidayat and N. Amelia, “Penerapan Jaringan Saraf Tiruan Backpropagation untuk Mendiagnosis Penyakit Kulit pada Manusia,” Jurnal Informatika Universitas Pamulang, vol. 6, no. 1, pp. 43–49, Januari 2021.

A.D. Putra and M.I. Ardiansyah, “Implementasi Algoritma Backpropagation untuk Klasifikasi Penyakit Kulit Menggunakan Data Gejala,” Jurnal Sains dan Informatika, vol. 8, no. 2, pp. 78–85, Juni 2022.

D.A. Sari and M.K.M. Nasution, “Penggunaan Algoritma Backpropagation dalam Diagnosa Penyakit Kulit dengan Jaringan Syaraf Tiruan,” Jurnal Teknologi dan Sistem Komputer, vol. 9, no. 3, pp. 315–322, September 2021.

L. Nurhayati and R. Yusuf, “Sistem Pakar Diagnosa Penyakit Kulit Menggunakan Metode Backpropagation Neural Network,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 10, no. 1, pp. 60–68, Februari 2023.

D. Prasetyo and S. Utami, “Analisis Diagnosa Penyakit Kulit dengan Jaringan Saraf Tiruan Berbasis Gejala,” Jurnal Komputer Terapan, vol. 7, no. 2, pp. 102–109, Agustus 2021.

R. Fadillah and A. Nugroho, “Klasifikasi Jenis Penyakit Kulit Menggunakan Algoritma Backpropagation,” Jurnal Teknologi dan Riset Komputer (JATIKOM), vol. 9, no. 3, pp. 144–150, September 2022.

S. Wulandari and R. Ramadhan, “Sistem Diagnosis Penyakit Kulit Menggunakan Artificial Neural Network,” Jurnal Informatika dan Komputer (JIKO), vol. 10, no. 1, pp. 50–58, Maret 2023.

A.R. Kusuma, *Jaringan Saraf Tiruan: Konsep dan Implementasi*, Yogyakarta: Deepublish, 2021

D. Hermawan, *Kecerdasan Buatan dalam Bidang Kesehatan: Teori dan Aplikasi*, Jakarta: Salemba Teknika, 2022.

T. Handayani and A. Rofiq, *Sistem Pakar Berbasis Jaringan Saraf Tiruan*, Bandung: Informatika, 2021.

E. Sutrisno, “Backpropagation Neural Network untuk Klasifikasi Penyakit Kulit,” Jurnal Teknologi dan Informatika, vol. 5, no. 2, pp. 34–41, Desember 2020.

Kementerian Kesehatan RI, “Mengenal Jenis Penyakit Kulit dan Cara Pencegahannya,” 2023. [Online]. Tersedia: https://www.kemkes.go.id/article/view/23010100001/mengenal-penyakit-kulit.html

A. Wijaya, “Penerapan Neural Network dalam Sistem Pakar Diagnosa Penyakit Kulit,” 2024. [Online]. Tersedia: https://ilmukomputer.org/neural-network-penyakit-kuli

R. Sembiring, *Penerapan Algoritma Backpropagation dalam Sistem Pakar Diagnostik Medis*, Jakarta: Andi, 2020.

R. Hamdani and Y. Rosyid, “Pengembangan Aplikasi Diagnosa Penyakit Kulit Berbasis Mobile Menggunakan Jaringan Syaraf Tiruan,” Jurnal Ilmiah Teknologi Informasi, vol. 7, no. 1, pp. 25–32, Januari 2023.

Sze, V., et al. (2017). Efficient processing of DNNs. Proceedings of the IEEE, 105(12), 2295–2329.

Taqi, M., et al. (2021). Backpropagation optimization in medical data classification. Journal of Biomedical Engineering, 45(1), 89–96.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks. arXiv preprint arXiv:1409.1556

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536.

Zhang, Y., & Wu, L. (2012). An MR brain images classifier via kernel-based learning. Expert Systems with Applications, 39(5), 4560–4565.

Downloads

Published

2025-03-20

How to Cite

Dony Jordan Pangomoan Sirait, Angga Priandi, Yemima Pepayosa Sembiring, Alyah Octafia, & Victor Asido Elyakim P. (2025). Diagnosis of Skin Diseases Using Artificial Neural Networks with Backpropagation Algorithm. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(1), 1–9. https://doi.org/10.55123/jomlai.v4i1.5643

Issue

Section

Articles