Implementation of Data Mining Algorithm for Clustering of Palm Oil Harvested Data

Penulis

  • Widya Juli Mawaddah STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Indra Gunawan STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Ika Purnama Sari STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.55123/jomlai.v1i1.163

Kata Kunci:

Clustering, Palm Oil, K-Means, Yields, Data Mining

Abstrak

Palm oil is one of the plantation commodities that has a strategic role in Indonesia's economic development. In this study, we will discuss oil palm yields at PPKS Marihat, one of the Oil Palm Research Center branches located in Simalungun Regency, Medan, North Sumatra. Know how it grows. The Clustering algorithm is used in K-Means. Using this method, the data will be grouped into 3 (three) Clusters, where the application of the K-Means Clustering process uses the Rapid Miner tools. The data used is data on oil palm harvests at PPKS Marihat in 2020, consisting of 100 data items. The results obtained are crop yields with an excellent value of 66 items, harvest data with a good deal of 32 items, and harvest data with a reasonably good value of 2 items, based on net total and gross amount for each region. Based on this, it can be concluded that the K-Means Algorithm can be used to Cluster oil palm yields at PPKS Marihat

Referensi

Y. Andriani, A. Wanto, and H. Handrizal, “Jaringan Saraf Tiruan dalam Memprediksi Produksi Kelapa Sawit di PT. KRE Menggunakan Algoritma Levenberg Marquardt,” Prosiding Seminar Nasional Riset Information Science (SENARIS), vol. 1, no. September, pp. 249–259, 2019.

C. Michael, P. Marpaung, and F. Siburian, “Analisis Hubungan Biaya Produksi Kelapa Sawit Terhadap Pendapatan Petani di Desa Pulo Bayu Kecamatan Hutabayu Raja, Kabupaten Simalungun Organik,” Jurnal Agroteknosains, vol. 4, no. 1, pp. 8–16, 2020.

N. Arminarahmah, A. D. GS, G. W. Bhawika, M. P. Dewi, and A. Wanto, “Mapping the Spread of Covid-19 in Asia Using Data Mining X-Means Algorithms,” IOP Conf. Series: Materials Science and Engineering, vol. 1071, no. 012018, pp. 1–7, 2021.

A. Pradipta, D. Hartama, A. Wanto, S. Saifullah, and J. Jalaluddin, “The Application of Data Mining in Determining Timely Graduation Using the C45 Algorithm,” IJISTECH (International Journal of Information System & Technology), vol. 3, no. 1, pp. 31–36, 2019.

T. H. Sinaga, A. Wanto, I. Gunawan, S. Sumarno, and Z. M. Nasution, “Implementation of Data Mining Using C4.5 Algorithm on Customer Satisfaction in Tirta Lihou PDAM,” Journal of Computer Networks, Architecture, and High-Performance Computing, vol. 3, no. 1, pp. 9–20, 2021.

N. A. Febriyati, A. D. GS, and A. Wanto, “GRDP Growth Rate Clustering in Surabaya City uses the K- Means Algorithm,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 276–283, 2020.

J. Hutagalung, N. L. W. S. R. Ginantra, G. W. Bhawika, W. G. S. Parwita, A. Wanto, and P. D. Panjaitan, “COVID-19 Cases and Deaths in Southeast Asia Clustering using K-Means Algorithm,” Journal of Physics: Conference Series, vol. 1783, no. 1, p. 012027, 2021.

I. Parlina et al., “Naive Bayes Algorithm Analysis to Determine the Percentage Level of visitors the Most Dominant Zoo Visit by Age Category,” in Journal of Physics: Conference Series, 2019, vol. 1255, no. 1, p. 012031.

M. A. Hanafiah, A. Wanto, and P. B. Indonesia, “Implementation of Data Mining Algorithms for Grouping Poverty Lines by District/City in North Sumatra,” International Journal of Information System & Technology, vol. 3, no. 2, pp. 315–322, 2020.

I. S. Damanik, A. P. Windarto, A. Wanto, Poningsih, S. R. Andani, and W. Saputra, “Decision Tree Optimization in C4.5 Algorithm Using Genetic Algorithm,” Journal of Physics: Conference Series, vol. 1255, no. 1, pp. 1–7, 2019.

A. Wanto et al., Data Mining : Algoritma dan Implementasi. Yayasan Kita Menulis, 2020.

D. Hartama, A. Perdana Windarto, and A. Wanto, “The Application of Data Mining in Determining Patterns of Interest of High School Graduates,” Journal of Physics: Conference Series, vol. 1339, no. 1, p. 012042, Dec. 2019.

B. Supriyadi, A. P. Windarto, T. Soemartono, and Mungad, “Classification of Natural Disaster Prone Areas in Indonesia using K-Means,” International Journal of Grid and Distributed Computing, vol. 11, no. 8, pp. 87–98, 2018.

A. S. Ahmar, D. Napitupulu, R. Rahim, R. Hidayat, Y. Sonatha, and M. Azmi, “Using K-Means Clustering to Cluster Provinces in Indonesia,” Journal of Physics: Conference Series, vol. 1028, no. 1, pp. 1–6, 2018.

K. Rahayu, L. Novianti, and M. Kusnandar, “Implementation Data Mining with K-Means Algorithm for Clustering Distribution Rabies Case Area in Palembang City,” Journal of Physics: Conference Series, vol. 1500, no. 1, pp. 1–9, 2020.

A. Moubayed, M. Injadat, A. Shami, and H. Lutfiyya, “Student Engagement Level in an e-Learning Environment: Clustering Using K-means,” American Journal of Distance Education, vol. 34, no. 2, pp. 137–156, 2020.

Diterbitkan

2022-03-18

Cara Mengutip

Mawaddah, W. J., Gunawan, I., & Sari, I. P. (2022). Implementation of Data Mining Algorithm for Clustering of Palm Oil Harvested Data. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 1(1), 43–54. https://doi.org/10.55123/jomlai.v1i1.163

Terbitan

Bagian

Articles