Implementation of SVM in Predicting Obesity Risk Based on Lifestyle and Dietary Patterns
DOI:
https://doi.org/10.55123/jomlai.v4i1.5766Keywords:
Obesity , Lifestyle , Support Vector Machine , Classification , Artificial IntelligenceAbstract
Obesity is one of the global health issues that has seen a significant increase in recent decades. This condition is closely related to an unbalanced modern lifestyle, such as lack of physical activity, unhealthy eating patterns, and habits of smoking and alcohol consumption. This study aims to analyze the relationship between lifestyle and obesity risk, as well as to evaluate the effectiveness of the Support Vector Machine (SVM) method in predicting the level of obesity risk. The dataset used was obtained from the Kaggle platform, covering various variables such as age, gender, body mass index (BMI), eating habits, sleep patterns, and physical activity. Preprocessing was carried out through data normalization and encoding of categorical variables to ensure data readiness before being input into the model. The SVM model was trained using various training and testing data split ratios and showed a very high accuracy rate, even reaching 100% in some scenarios. These results demonstrate that SVM can effectively identify patterns in lifestyle data that contribute to obesity. Thus, the application of SVM can be a useful predictive tool for healthcare professionals in designing more accurate and efficient data-driven obesity prevention strategies.
References
A. B. Putri and A. Makmun, “Pola Makan terhadap Obesitas,” Indones. J. Heal., vol. xx, no. xx, pp. 68–76, 2021, doi: 10.33368/inajoh.v2i1.39.
A. I. Putri, Y. Syarif, P. Jayadi, F. Arrazak, and F. N. Salisah, “Implementasi Algoritma Decision Tree dan Support Vector Machine (SVM) untuk Prediksi Risiko Stunting pada Keluarga,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 349–357, 2024, doi: 10.57152/malcom.v3i2.1228.
N. Istanti, Y. Ernawati, and A. N. Antara, “Faktor-faktor yang mempengaruhi risiko obesitas pada remaja di Panti Asuhan Darun Najah Sleman Yogyakarta,” vol. 12, no. 2, pp. 206–217, 2024, [Online]. Available: https://ejournal.unsrat.ac.id/v3/index.php/jkp/article/view/55870/47465
L. Fitria, Y. Yarmaliza, and Z. Zalmaliza, “Evaluasi Perilaku Masyarakat Terhadap Faktor Resiko Kejadian Hipertensi Desa Purwodadi Tahun 2022,” J-KESMAS J. Kesehat. Masy., vol. 8, no. 1, p. 73, 2022, doi: 10.35329/jkesmas.v8i1.2858.
Azmy Mu’thia Hanum, “FAKTOR-FAKTOR PENYEBAB TERJADINYA OBESITAS PADA REMAJA Azmy Mu’ thia Hanum Program Studi Gizi, Fakultas Kesehatan Masyarakat, Universitas Airlangga,” vol. 9, no. 2, pp. 137–147, 2023.
R. Rosmiati, N. R. Haryana, H. Firmansyah, and R. Purba, “Pola Makan, Aktivitas Fisik dan Obesitas pada Pekerja Urban di Indonesia,” Amerta Nutr., vol. 7, no. 2SP, pp. 164–170, 2023, doi: 10.20473/amnt.v7i2sp.2023.164-170.
A. Khikam, N. M. Anggadimas, M. Udin, T. Informatika, U. M. Pasuruan, and K. Pasuruan, “IMPLEMENTASI DECISION TREE UNTUK KLASIKASI OBESITAS,” vol. 9, no. 3, pp. 3946–3952, 2025.
A. S. . Meiilana, F. Bachtiar, Condrowati, and F. Nazhira, “Hubungan antara Aktivitas Fisik dengan Indeks Massa Tubuh pada Situasi Pandemi Covid-19,” Sains Olahraga dan Pendidik. JasmaniI, vol. 4, no. 2, pp. 1–14, 2022.
L. Setiyani, A. N. Indahsari, and R. Roestam, “Analisis Prediksi Level Obesitas Menggunakan Perbandingan Algoritma Machine Learning dan Deep Learning,” JTERA (Jurnal Teknol. Rekayasa), vol. 8, no. 1, p. 139, 2023, doi: 10.31544/jtera.v8.i1.2022.139-146.
S. A. Utiarahman, A. Mulawati, and M. Pratama, “Penerapan Support Vector Machine dan Random Forest Classifier Untuk Klasifikasi Tingkat Obesitas,” vol. 14, no. 3, pp. 754–760, 2024.
U. Muhammadiyah, M. Aceh, and U. B. Nusantara, “Penggunaan Algoritma Support Vector Machine ( SVM ) Untuk Deteksi Penipuan pada Transaksi Online,” vol. 13, pp. 1627–1632, 2024.
W. Athira Luqyana, I. Cholissodin, and R. S. Perdana, “Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4704–4713, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
N. G. Ramadhan and A. Khoirunnisa, “Klasifikasi Data Malaria Menggunakan Metode Support Vector Machine,” J. Media Inform. Budidarma, vol. 5, no. 4, p. 1580, 2021, doi: 10.30865/mib.v5i4.3347.
N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021.
M Riski Qisthiano, “Klasifikasi Terhadap Prediksi Kelulusan Mahasiswa Dengan Menggunakan Metode Support Vector Machine (Svm),” Semin. Nas. Teknol. dan Multidisiplin Ilmu, vol. 2, no. 2, pp. 203–207, 2022, doi: 10.51903/semnastekmu.v2i1.170.
R. Nanda, E. Haerani, S. K. Gusti, and S. Ramadhani, “Klasifikasi Berita Menggunakan Metode Support Vector Machine,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 2, pp. 269–278, 2022, doi: 10.32672/jnkti.v5i2.4193.
Septi Putri, Yohanes Agung Apriyanto, and Andri Wijaya, “Analisis Sentimen Ulasan Aplikasi Deepl Pada Google Play Dengan Metode Support Vector Machine (Svm),” J. Sist. Inf., vol. 4, no. 2, pp. 59–66, 2023, doi: 10.32546/jusin.v4i2.2368.
M. . Imelda A.Muis & Muhammad Affandes, “Penerapan Metode Support Vector Machine ( SVM ) Menggunakan Kernel Radial Basis Function ( RBF ) Pada Klasifikasi Tweet,” Sains, Teknol. dan Ind. Sultan Syarif Kasim Riau, vol. 12, no. 2, pp. 189–197, 2015.
M. G. Pradana, P. H. Saputro, and D. P. Wijaya, “Komparasi Metode Support Vector Machine Dan Naïve Bayes Dalam Klasifikasi Peluang Penyakit Serangan Jantung,” Indones. J. Bus. Intell., vol. 5, no. 2, p. 87, 2022, doi: 10.21927/ijubi.v5i2.2659.
N. M. Farhan and B. Setiaji, “Indonesian Journal of Computer Science,” Indones. J. Comput. Sci., vol. 12, no. 2, pp. 284–301, 2023, [Online]. Available: http://ijcs.stmikindonesia.ac.id/ijcs/index.php/ijcs/article/view/3135
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Adinda Febiola, Fahriya Ardiningrum, Michael Orlando A. Purba, Fernando Siahaan, Victor Asido Elyakim P

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 The authors. Published by Yayasan Literasi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The author(s) whose article is published in the JOMLAI journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JOMLAI, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (JOMLAI: Journal of Machine Learning and Artificial Intelligence).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JOMLAI will not be held responsible for anything that may arise because of the writer's internal dispute. JOMLAI will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JOMLAI allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JOMLAI to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published



















