Implementation of SVM in Predicting Obesity Risk Based on Lifestyle and Dietary Patterns

Authors

  • Adinda Febiola STIKOM Tunas Bangsa
  • Fahriya Ardiningrum STIKOM Tunas Bangsa
  • Michael Orlando A. Purba STIKOM Tunas Bangsa
  • Fernando Siahaan STIKOM Tunas Bangsa
  • Victor Asido Elyakim P STIKOM Tunas Bangsa

DOI:

https://doi.org/10.55123/jomlai.v4i1.5766

Keywords:

Obesity , Lifestyle , Support Vector Machine , Classification , Artificial Intelligence

Abstract

Obesity is one of the global health issues that has seen a significant increase in recent decades. This condition is closely related to an unbalanced modern lifestyle, such as lack of physical activity, unhealthy eating patterns, and habits of smoking and alcohol consumption. This study aims to analyze the relationship between lifestyle and obesity risk, as well as to evaluate the effectiveness of the Support Vector Machine (SVM) method in predicting the level of obesity risk. The dataset used was obtained from the Kaggle platform, covering various variables such as age, gender, body mass index (BMI), eating habits, sleep patterns, and physical activity. Preprocessing was carried out through data normalization and encoding of categorical variables to ensure data readiness before being input into the model. The SVM model was trained using various training and testing data split ratios and showed a very high accuracy rate, even reaching 100% in some scenarios. These results demonstrate that SVM can effectively identify patterns in lifestyle data that contribute to obesity. Thus, the application of SVM can be a useful predictive tool for healthcare professionals in designing more accurate and efficient data-driven obesity prevention strategies.

References

A. B. Putri and A. Makmun, “Pola Makan terhadap Obesitas,” Indones. J. Heal., vol. xx, no. xx, pp. 68–76, 2021, doi: 10.33368/inajoh.v2i1.39.

A. I. Putri, Y. Syarif, P. Jayadi, F. Arrazak, and F. N. Salisah, “Implementasi Algoritma Decision Tree dan Support Vector Machine (SVM) untuk Prediksi Risiko Stunting pada Keluarga,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 349–357, 2024, doi: 10.57152/malcom.v3i2.1228.

N. Istanti, Y. Ernawati, and A. N. Antara, “Faktor-faktor yang mempengaruhi risiko obesitas pada remaja di Panti Asuhan Darun Najah Sleman Yogyakarta,” vol. 12, no. 2, pp. 206–217, 2024, [Online]. Available: https://ejournal.unsrat.ac.id/v3/index.php/jkp/article/view/55870/47465

L. Fitria, Y. Yarmaliza, and Z. Zalmaliza, “Evaluasi Perilaku Masyarakat Terhadap Faktor Resiko Kejadian Hipertensi Desa Purwodadi Tahun 2022,” J-KESMAS J. Kesehat. Masy., vol. 8, no. 1, p. 73, 2022, doi: 10.35329/jkesmas.v8i1.2858.

Azmy Mu’thia Hanum, “FAKTOR-FAKTOR PENYEBAB TERJADINYA OBESITAS PADA REMAJA Azmy Mu’ thia Hanum Program Studi Gizi, Fakultas Kesehatan Masyarakat, Universitas Airlangga,” vol. 9, no. 2, pp. 137–147, 2023.

R. Rosmiati, N. R. Haryana, H. Firmansyah, and R. Purba, “Pola Makan, Aktivitas Fisik dan Obesitas pada Pekerja Urban di Indonesia,” Amerta Nutr., vol. 7, no. 2SP, pp. 164–170, 2023, doi: 10.20473/amnt.v7i2sp.2023.164-170.

A. Khikam, N. M. Anggadimas, M. Udin, T. Informatika, U. M. Pasuruan, and K. Pasuruan, “IMPLEMENTASI DECISION TREE UNTUK KLASIKASI OBESITAS,” vol. 9, no. 3, pp. 3946–3952, 2025.

A. S. . Meiilana, F. Bachtiar, Condrowati, and F. Nazhira, “Hubungan antara Aktivitas Fisik dengan Indeks Massa Tubuh pada Situasi Pandemi Covid-19,” Sains Olahraga dan Pendidik. JasmaniI, vol. 4, no. 2, pp. 1–14, 2022.

L. Setiyani, A. N. Indahsari, and R. Roestam, “Analisis Prediksi Level Obesitas Menggunakan Perbandingan Algoritma Machine Learning dan Deep Learning,” JTERA (Jurnal Teknol. Rekayasa), vol. 8, no. 1, p. 139, 2023, doi: 10.31544/jtera.v8.i1.2022.139-146.

S. A. Utiarahman, A. Mulawati, and M. Pratama, “Penerapan Support Vector Machine dan Random Forest Classifier Untuk Klasifikasi Tingkat Obesitas,” vol. 14, no. 3, pp. 754–760, 2024.

U. Muhammadiyah, M. Aceh, and U. B. Nusantara, “Penggunaan Algoritma Support Vector Machine ( SVM ) Untuk Deteksi Penipuan pada Transaksi Online,” vol. 13, pp. 1627–1632, 2024.

W. Athira Luqyana, I. Cholissodin, and R. S. Perdana, “Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4704–4713, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

N. G. Ramadhan and A. Khoirunnisa, “Klasifikasi Data Malaria Menggunakan Metode Support Vector Machine,” J. Media Inform. Budidarma, vol. 5, no. 4, p. 1580, 2021, doi: 10.30865/mib.v5i4.3347.

N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021.

M Riski Qisthiano, “Klasifikasi Terhadap Prediksi Kelulusan Mahasiswa Dengan Menggunakan Metode Support Vector Machine (Svm),” Semin. Nas. Teknol. dan Multidisiplin Ilmu, vol. 2, no. 2, pp. 203–207, 2022, doi: 10.51903/semnastekmu.v2i1.170.

R. Nanda, E. Haerani, S. K. Gusti, and S. Ramadhani, “Klasifikasi Berita Menggunakan Metode Support Vector Machine,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 2, pp. 269–278, 2022, doi: 10.32672/jnkti.v5i2.4193.

Septi Putri, Yohanes Agung Apriyanto, and Andri Wijaya, “Analisis Sentimen Ulasan Aplikasi Deepl Pada Google Play Dengan Metode Support Vector Machine (Svm),” J. Sist. Inf., vol. 4, no. 2, pp. 59–66, 2023, doi: 10.32546/jusin.v4i2.2368.

M. . Imelda A.Muis & Muhammad Affandes, “Penerapan Metode Support Vector Machine ( SVM ) Menggunakan Kernel Radial Basis Function ( RBF ) Pada Klasifikasi Tweet,” Sains, Teknol. dan Ind. Sultan Syarif Kasim Riau, vol. 12, no. 2, pp. 189–197, 2015.

M. G. Pradana, P. H. Saputro, and D. P. Wijaya, “Komparasi Metode Support Vector Machine Dan Naïve Bayes Dalam Klasifikasi Peluang Penyakit Serangan Jantung,” Indones. J. Bus. Intell., vol. 5, no. 2, p. 87, 2022, doi: 10.21927/ijubi.v5i2.2659.

N. M. Farhan and B. Setiaji, “Indonesian Journal of Computer Science,” Indones. J. Comput. Sci., vol. 12, no. 2, pp. 284–301, 2023, [Online]. Available: http://ijcs.stmikindonesia.ac.id/ijcs/index.php/ijcs/article/view/3135

Downloads

Published

2025-03-20

How to Cite

Adinda Febiola, Fahriya Ardiningrum, Michael Orlando A. Purba, Fernando Siahaan, & Victor Asido Elyakim P. (2025). Implementation of SVM in Predicting Obesity Risk Based on Lifestyle and Dietary Patterns. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(1), 38–45. https://doi.org/10.55123/jomlai.v4i1.5766

Issue

Section

Articles