Prediction of Poverty Levels in Indonesia Using the Tsukamoto Fuzzy Logic Method

Penulis

  • Aklima Laduna Ramadya STIKOM Tunas Bangsa
  • Tiara Dwi Lestari Purba STIKOM Tunas Bangsa
  • Ega Wahyu Andani STIKOM Tunas Bangsa
  • Baginda Faustine Sinaga STIKOM Tunas Bangsa
  • Victor Asido Elyakim P STIKOM Tunas Bangsa

DOI:

https://doi.org/10.55123/jomlai.v4i1.5955

Kata Kunci:

Poverty , Fuzzy Tsukamoto , Prediction , Fuzzy Logic , BPS

Abstrak

Poverty remains a fundamental issue and a primary focus in Indonesia's development. Conventional analysis often fails to provide an accurate picture due to the complexity of its underlying factors. This study aims to build a prediction model for poverty levels in Indonesia using the Tsukamoto fuzzy logic method, based on macroeconomic data from the Central Statistics Agency (BPS) for the years 2022 to 2024. Input variables include inflation rates, unemployment, and economic growth, with the output being the predicted poverty level in percentage. The fuzzy inference process involves fuzzification, rule base formation, fuzzy logic inference, and defuzzification. Data on the percentage of the poor population from BPS shows a decrease from 9.57% in 2022 to 9.27% in 2024. However, significant regional disparities and economic vulnerabilities persist due to global factors like inflation. Fuzzy logic, especially the Tsukamoto fuzzy method, is an adaptive approach capable of handling uncertainty and linguistic variables, while producing numerical outputs. The research results indicate that the fuzzy Tsukamoto model successfully predicts poverty levels with high accuracy, showing an average difference of less than 0.1% from actual data. This finding suggests that the Tsukamoto fuzzy method can be an effective predictive alternative in addressing socio-economic data uncertainties and supporting the formulation of more targeted policies.

Referensi

H. Pasarela and R. Juanda, “Socius: Jurnal Penelitian Ilmu-Ilmu Sosial Kebijakan Pengentasan Kemiskinan di Indonesia: Sebuah Fakta di Indonesia,” 2024, doi: 10.5281/zenodo.13314063.

A. Sarjito, “Dampak Kemiskinan terhadap Akses Pelayanan Kesehatan di Indonesia,” Politik dan Pemerintahan, vol. 13, 2024.

A. Fitri, A. Mula Defi Saragih, A. Silitonga, S. Frisnoiry, P. Matematika, and K. Kunci, “Pengaruh Pertumbuhan Penduduk terhadap Data Kemiskinan di Indonesia 5 Tahun Terakhir.”

“PENERAPAN FUZZY TSUKAMOTO UNTUK MENENTUKAN BANTUAN SISWA MISKIN (BSM)”.

Afifah Rodhiyatun Nisa et al., “Prediction on Target of Underprivileged Scholarships Using Fuzzy Logic Method,” Journal of Applied Science, Technology & Humanities, vol. 1, no. 2, pp. 159–173, May 2024, doi: 10.62535/4bg52465.

H. Dony Hahury, J. Aplikasi Kebijakan Publik dan Bisnis, A. Pesireron, H. D. Hahury, and T. Ch Leasiwal, “Public Policy: Unemployment and Poverty on Indonesia’s Economic Growth in 2002-2022,” 2025. [Online]. Available: https://www.researchgate.net/publication/389686593

A. Aswanto and Y. Edward, “ANALISIS TINGKAT PENGANGGURAN DAN KEMISKINAN TERHADAP PERTUMBUHAN EKONOMI INDONESIA,” ANALISIS, vol. 15, no. 01, pp. 98–116, Mar. 2025, doi: 10.37478/als.v15i01.5327.

Fatah Ridho Perdana, Gian Athallah, and Perani Rosyani, “Comparison of Copras, Vikor, and Waspas Methods in School Promotion Media Selection,” International Journal of Integrative Sciences, vol. 2, no. 12, pp. 1951–1966, Dec. 2023, doi: 10.55927/ijis.v2i12.7234.

R. Raharti, T. Laras, and O. Oktavianti, “Model Ketimpangan Pembangunan Ekonomi di Indonesia,” Jurnal Samudra Ekonomi dan Bisnis, vol. 12, no. 2, pp. 257–270, Jul. 2021, doi: 10.33059/jseb.v12i2.2422.

D. Septiadi and M. Nursan, “PENGENTASAN KEMISKINAN INDONESIA: ANALISIS INDIKATOR MAKROEKONOMI DAN KEBIJAKAN PERTANIAN,” Jurnal Hexagro, vol. 4, no. 1, Feb. 2020, doi: 10.36423/hexagro.v4i1.371.

R. Mardiatillah, M. Panorama, R. Sumantri, and F. Ekonomi Dan Bisnis Islam UIN Raden Fatah, “Pengaruh pengangguran dan inflasi terhadap tingkat kemiskinan di sumatera selatan tahun 2015-2019,” vol. 18, no. 2, pp. 2021–279, 2023, [Online]. Available: http://journal.feb.unmul.ac.id/index.php/KINERJA

S. Basriati et al., “Penerapan Metode Fuzzy Tsukamoto dalam Menentukan Jumlah Produksi Tahu,” Jurnal Sains, Teknologi dan Industri, vol. 18, no. 1, pp. 120–125, 2020.

S. Suhendri, Deffy Susanti, and Reyza Reantino Hanggara, “IMPLEMENTASI ALGORITMA FUZZY TSUKAMOTO PADA SISTEM PENDUKUNG KEPUTUSAN PENENTUAN PENERIMA BANTUAN PROGRAM KELUARGA HARAPAN (PKH) DI KABUPATEN MAJALENGKA,” INFOTECH journal, vol. 8, no. 2, pp. 84–93, Oct. 2022, doi: 10.31949/infotech.v8i2.3312.

R. Akbar, E. Itje Sela, and M. Informatika UIN Sunan Kalijaga Yogyakarta, “ANALISIS PERBANDINGAN FUZZY TSUKAMOTO DAN SUGENO DALAM MENENTUKAN JUMLAH PRODUKSI KAIN TENUN MENGGUNAKAN BASE RULE DECISION TREE COMPARATIVE ANALYSIS OF FUZZY TSUKAMOTO AND SUGENO IN DETERMINING THE AMOUNT OF WEAVING FABRIC PRODUCTION USING THE DECISION TREE BASE RULE,” vol. 7, no. 1, pp. 171–180, 2020, doi: 10.25126/jtiik.202071751.

H. Sofyan, N. Fazmi, L. Rahayu Siregar, M. Iqbal, and P. Studi Statistika, “Analisis dan Rancangan Sistem Fuzzy dalam Pengklasifikasian Tingkat Kemiskinan di Provinsi Aceh,” 2021.

I. Benedetti, F. Crescenzi, T. Laureti, and L. Secondi, “Adopting the fuzzy approach to analyze food poverty in Italy: A study on vulnerable households using household budget survey data,” Socioecon Plann Sci, vol. 95, Oct. 2024, doi: 10.1016/j.seps.2024.102006.

N. Handastya and G. Betti, “The ‘Double Fuzzy Set’ Approach to Multidimensional Poverty Measurement: With a Focus on the Health Dimension,” Soc Indic Res, vol. 166, no. 1, pp. 201–217, Feb. 2023, doi: 10.1007/s11205-023-03065-1.

S. Redjeki, “Analisis Performance Fuzzy Tsukamoto Dalam Klasifikasi Bantuan Kemiskinan.” [Online]. Available: http://jurnal.buddhidharma.ac.id

B. Sutara and H. Kuswanto, “ANALISA PERBANDINGAN FUZZY LOGIC METODE TSUKAMOTO, SUGENO, MAMDANI DALAM PENENTUAN KELUARGA MISKIN,” Jurnal Infotekmesin, vol. 10, no. 02, 2020.

Oktommy, “PENERAPAN FUZZY TSUKAMOTO UNTUK MENENTUKAN BANTUAN SISWA MISKIN (BSM) DI UPTD SD NEGERI 1 NEGARA BATIN,” vol. 3, Mar. 2024.

Diterbitkan

2025-03-20

Cara Mengutip

Aklima Laduna Ramadya, Tiara Dwi Lestari Purba, Ega Wahyu Andani, Baginda Faustine Sinaga, & Victor Asido Elyakim P. (2025). Prediction of Poverty Levels in Indonesia Using the Tsukamoto Fuzzy Logic Method . JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(1), 46–52. https://doi.org/10.55123/jomlai.v4i1.5955

Terbitan

Bagian

Articles