Classification of Village Development Index in North Sumatra Using the Support Vector Machine (SVM) Method

Penulis

  • Yayang Arum Kemangi STIKOM Tunas Bangsa
  • Daniel Desmanto Sihombing STIKOM Tunas Bangsa
  • Permaisuri Siregar STIKOM Tunas Bangsa
  • Sella Ujani STIKOM Tunas Bangsa
  • Victor Asido Elyakim P STIKOM Tunas Bangsa

DOI:

https://doi.org/10.55123/jomlai.v4i3.6117

Kata Kunci:

Classification , Village Development Index (IDM) , Support Vector Machine (SVM) , Sub-Indeks , Sumatera Utara

Abstrak

The classification of the Village Development Index (IDM) status is a fundamental component in formulating targeted and effective village development policies. However, the conventional classification process is often slow and inefficient, thereby reducing the data's relevance for dynamic decision-making. This research aims to design and evaluate an automatic classification model for the IDM status in 5,417 villages in North Sumatra Province using the Support Vector Machine (SVM) method. By utilizing secondary data from 2024, this model uses three main sub-indices—the Social Resilience Index (IKS), the Economic Resilience Index (IKE), and the Environmental Resilience Index (IKL)—as predictor variables to map villages into five status categories. The implementation of the SVM model with a Radial Basis Function (RBF) kernel was chosen to handle the complex non-linear relationships between variables. The evaluation results on the test data show superior performance, with an overall accuracy rate reaching 96.77%. The model's performance proved to be very strong, particularly in identifying the 'Developing' class with a perfect recall (1.00) and the 'Independent' class with perfect precision (1.00). Although minor challenges were found in distinguishing between adjacent classes such as 'Disadvantaged' and 'Developing', the high F1-score across all classes confirms a good balance between precision and recall. This study concludes that the SVM method is a highly reliable and valid approach for automating IDM classification, and it offers significant implications as a fast and accurate evidence-based decision support tool for local government

Referensi

A. Irma Seska Arina, V. Masinambow, and E. N. Walewangko, “PENGARUH DANA DESA DAN ALOKASI DANA DESA TERHADAP INDEKS DESA MEMBANGUN DI KABUPATEN MINAHASA TENGGARA,” 2021.

M. C. Nur Fitria, N. N. Debataraja, and S. W. Rizki, “Classification of Village Status in Landak Regency Using C5.0 Algorithm,” Tensor: Pure and Applied Mathematics Journal, vol. 3, no. 1, pp. 33–42, Jun. 2022, doi: 10.30598/tensorvol3iss1pp33-42.

A. C. Adha, A. Marzuki, Y. S. Nelaz, S. H. Hendriani, and N. Purnomo, “Penerapan Data Mining Menggunakan Metode Klasifikasi Dalam Memprediksi Status Desa Berdasarkan Indeks Desa Membangun,” Jurnal Minfo Polgan, vol. 13, no. 2, pp. 1782–1788, Nov. 2024, doi: 10.33395/jmp.v13i2.14250.

A. Rifai, S. E. Permana, and R. Hamonangan, “OPTIMALISASI KLASIFIKASI INDEKS DESA MEMBANGUN MENGGUNAKAN METODE ENSEMBLE DAN ALGORITMA RANDOM FOREST,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 4, pp. 8226–8234, 2024.

M. R. Hendriawan and R. R. Marliana, “Pengelompokan Desa di Jawa Barat Berdasarkan Indeks Desa Membangun (IDM) Menggunakan ALgoritma Clustering Large Application (CLARA),” JAMBURA JOURNAL OF PROBABILITY AND STATISTICS, vol. 6, no. 1, pp. 35–41, 2025, doi: 10.34312/jjps.v4i1.27450.

A. N. Astika and N. S. Subawa, “Evaluasi Pembangunan Desa Berdasarkan Indeks Desa Membangun,” JURNAL ILMIAH MUQODDIMAH: Jurnal Ilmu Sosial, Politik Dan Humaniora, vol. 5, no. 2, pp. 223–232, 2021, [Online]. Available: http://jurnal.um-tapsel.ac.id/index.php/muqoddimah

R. Obiedat et al., “Sentiment Analysis of Customers’ Reviews Using a Hybrid Evolutionary SVM-Based Approach in an Imbalanced Data Distribution,” IEEE Access, vol. 10, pp. 22260–22273, 2022, doi: 10.1109/ACCESS.2022.3149482.

M. Rahardi, A. Aminuddin, F. F. Abdulloh, and R. A. Nugroho, “Sentiment Analysis of Covid-19 Vaccination using Support Vector Machine in Indonesia,” (IJACSA) International Journal of Advanced Computer Science and Applications, vol. 13, no. 6, pp. 534–539, 2022, doi: 10.14569/IJACSA.2022.0130665.

K. X. Han, W. Chien, C. C. Chiu, and Y. T. Cheng, “Application of support vector machine (SVM) in the sentiment analysis of twitter dataset,” Applied Sciences (Switzerland), vol. 10, no. 3, Feb. 2020, doi: 10.3390/app10031125.

N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” Jurnal Informatika: Jurnal pengembangan IT (JPIT), vol. 6, no. 3, pp. 150–55, 2021, doi: 10.30591/jpit.v6i3.2870.

Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “PENERAPAN METODE SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PENGGUNA TWITTER,” JOISM : JURNAL OF INFORMATION SYSTEM MANAGEMENT, vol. 3, no. 1, pp. 16–1, 2021, doi: 10.24076/joism.2021v3i2.558.

V. Fitriyana et al., “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,” 2023.

M. Hadi Arfian et al., “Analisis Sentimen Pada Media Sosial Menggunakan Metode Support Vector Machine,” Jurnal Ilmu Teknik dan Komputer, vol. 09, no. 01, pp. 1–6, 2025, doi: 10.22441/jitkom.v9i1.001.

F. Latuconsina, M. S. Noya van Delsen, and Yudistira, “Klasifikasi Menggunakan Metode Support Vector Machine (SVM) Multiclass pada Data Indeks Desa Membangun (IDM) di Provinsi Maluku,” Journal of Mathematics, Computations and Statistics, vol. 7, no. 2, pp. 380–395, Oct. 2024, doi: 10.35580/jmathcos.v7i2.3624.

N. A. Utami and A. W. Wijayanto, “Classification of Village Development Index at Regency/Municipality Level Using Bayesian Network Approach with K-Means Discretization,” Jurnal Aplikasi Statistika & Komputasi Statistik, vol. 12, no. 3, pp. 95–106, 2022.

A. Nikmah, C. Nisa, and M. Riefky, “Penerapan Algoritma K-Medoids untuk Pengelompokkan Provinsi di Indonesia Berdasarkan Status Gizi Anak Balita,” Emerging Statistics and Data Science Journal, vol. 3, no. 1, pp. 516–524, 2025.

K. Setiawan, Kastum, and Y. P. Pratama, “K-Means Clustering Analysis of Poverty Data in Cilacap District,” International Journal Software Engineering and Computer Science (IJSECS), vol. 5, no. 1, pp. 53–62, Apr. 2025, doi: 10.35870/ijsecs.v5i1.3759.

I. M. Parapat, M. T. Furqon, and Sutrisno, “Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 10, pp. 3163–3169, 2018.

A. S. Harahap and P. Zulvia, “Klasterisasi Desa dengan Menggunakan Algoritma K-Means pada Data Potensi Desa,” JURIKOM (Jurnal Riset Komputer), vol. 8, no. 6, p. 237, Dec. 2021, doi: 10.30865/jurikom.v8i6.3724.

D. T. Bachruddin and B. A. Darma, “Analisis Pembangunan Desa Berdasarkan Capaian Indeks Desa Membangun di Kabupaten Serang,” Jurnal Analis Kebijakan, vol. 4, no. 1, pp. 1–12, 2020.

Diterbitkan

2025-09-15

Cara Mengutip

Yayang Arum Kemangi, Daniel Desmanto Sihombing, Permaisuri Siregar, Sella Ujani, & Victor Asido Elyakim P. (2025). Classification of Village Development Index in North Sumatra Using the Support Vector Machine (SVM) Method. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(3), 127–136. https://doi.org/10.55123/jomlai.v4i3.6117

Terbitan

Bagian

Articles