Analysis of Unemployment Rate in Indonesia Using Fuzzy Inference System
DOI:
https://doi.org/10.55123/jomlai.v4i1.5956Keywords:
Fuzzy Logic , Unemployment , BPS, Inference System, ClassificationAbstract
Unemployment is a complex problem that demands an analytical approach capable of handling data uncertainty. This study utilizes a fuzzy inference system to analyze unemployment rates in Indonesia, based on Central Statistics Agency (BPS) data for the 2023-2025 period. The fuzzy logic method was chosen due to its ability to handle linguistic variables and uncertainty in classifying unemployment levels. Input variables include education level, age group, and geographical area, while the output is a classification of unemployment risk (low, medium, high). The fuzzy inference process involves fuzzification, rule base formation, fuzzy logic inference, and defuzzification. BPS data indicates that the Open Unemployment Rate (TPT) experienced a consistent downward trend from 5.45% in February 2023 to 4.76% in February 2025. Nevertheless, the complexity of unemployment requires a flexible approach that can capture nuances of uncertainty, which conventional methods are unable to address. The research results show that the fuzzy inference system is capable of classifying unemployment levels with an accuracy of 87.3%. The highest unemployment rate is found in the 15-24 age group and among high school/vocational school graduates. This system can serve as a decision-making tool for the government in formulating more targeted employment policies.
References
C. F. R. Olii and Y. S. Dewi, “Tingkat Pengangguran Terbuka di Indonesia : Tantangan dan Solusi dalam Tingkat Pengangguran Terbuka di Indonesia : Tantangan dan Solusi dalam Konteks Perekonomian Pasca-Pandemi,” no. August 2023, 2024, doi: 10.13140/RG.2.2.11138.08644.
H. Sofyan, N. Fazmi, L. R. Siregar, M. Marzuki, M. Iqbal, and N. Nazaruddin, “Analisis dan Rancangan Sistem Fuzzy dalam Pengklasifikasian Tingkat Kemiskinan di Provinsi Aceh,” Stat. J. Theor. Stat. Its Appl., vol. 21, no. 1, pp. 45–50, 2021, doi: 10.29313/jstat.v21i1.7908.
A. N. Buulolo, A. N. Setyana, N. Khotimah, R. N. N. Azizah, J. W. Kusuma, and M. Huda, “Pengangguran dan Ketidakpastian Ekonomi: Analisis Statistik dari Studi Literatur Sistematis,” Disk. Panel Nas. Pendidik. Mat., vol. 10, pp. 545–554, 2024.
A. E. Wardoyo and N. Tripuspita, “Penentuan Cluster Optimum pada Tingkat Pengangguran dan Tingkat Kemiskinan di Jawa Timur Menggunakan Algoritma Fuzzy C-Means,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 1, no. 2, pp. 40–47, 2021, doi: 10.37148/bios.v1i2.10.
D. L. Rahakbauw, M. I. Tanassy, and B. P. Tomasouw, “Sistem Prediksi Tingkat Pengangguran Di Provinsi Maluku Menggunakan Anfis (Adaptive Neuro Fuzzy Inference System),” Barekeng J. Ilmu Mat. Dan Terap., vol. 12, no. 2, pp. 099–106, 2018, doi: 10.30598/vol12iss2pp099-106ar621.
K. Yudhistiro and H. Pamuntjar, “Sistem Inferensi Fuzzy Mamdani Untuk Penunjang Keputusan Penentuan Potensi Desa Di Kabupaten Malang,” Smatika J., vol. 9, no. 01, pp. 28–38, 2019, doi: 10.32664/smatika.v9i01.244.
A. N. Paradhita, “Prediksi Inflasi di Indonesia Menggunakan Algoritma Fuzzy dengan Bahasa Pemrograman Phyton,” J. Penelit. Inov., vol. 4, no. 2, pp. 457–464, 2024, doi: 10.54082/jupin.339.
C. P. P. Maibang and A. M. Husein, “Prediksi Jumlah Produksi Palm Oil Menggunakan Fuzzy Inference System Mamdani,” J. Teknol. dan Ilmu Komput. Prima, vol. 2, no. 2, p. 19, 2019, doi: 10.34012/jutikomp.v2i2.528.
Badan Pusat Statistik, “Booklet Survei Angkatan Kerja Nasional Agustus 2023,” Badan Pusat Statistik Indonesia. [Online]. Available: https://www.bps.go.id/en/publication/2023/12/22/ffb3e2d42b94d727d97e78d8/booklet-survei-angkatan-kerja-nasional-agustus-2023.html
Badan Pusat Statistik, “Keadaan Angkatan Kerja di Indonesia Agustus 2024,” Badan Pusat Statistik Indonesia. [Online]. Available: https://www.bps.go.id/en/publication/2024/12/09/6f1fd1036968c8a28e4cfe26/keadaan-angkatan-kerja-di-indonesia-agustus-2024.html
Badan Pusat Statistik, “Tingkat Pengangguran Terbuka Berdasarkan Jenis Kelamin,” Badan Pusat Statistik Indonesia. [Online]. Available: https://www.bps.go.id/en/statistics-table/2/MTE3NyMy/tingkat-pengangguran-terbuka-berdasarkan-jenis-kelamin.html
L. Sudarmana, “B . KONSEP LOGIKA FUZZY Himpunan Tegas dan Himpunan Kabur Fungsi Keanggotaan,” Teknomatika, vol. 3, 2021.
A. Alamsyah and I. H. Muna, “Metode Fuzzy Inference System untuk Penilaian Kinerja Pegawai Perpustakaan dan Pustakawan,” Sci. J. Informatics, vol. 3, no. 1, pp. 88–98, 2020, doi: 10.15294/sji.v3i1.6136.
W. A. Marlisa Lisa, Ermawati, “Aplikasi Fuzzy Inference System ( Fis ) Metode Sugeno Dalam Sistem Pendukung Keputusan ( Spk ) Untuk Menentukan Jumlah Produksi Barang Berdasarkan Data Persediaan Dan Jumlah,” Msa, vol. 5, no. 2, pp. 1–13, 2020, [Online]. Available: http://journal.uin-alauddin.ac.id/index.php/msa/article/view/4504
U. R. F. Tolang and S. Sugiyarto, “Implementasi fuzzy inference system untuk pengambilan keputusan,” J. Ilm. Mat., vol. 7, no. 1, p. 43, 2020, doi: 10.26555/konvergensi.v7i1.19541.
Gusti Ngurah Mega Nata and Putu Pande Yudiastra, “Fuzzy Inference System dan Fuzzy Database sebagai Kecerdasan Basis Data untuk Kontrol Stok,” J. Sist. dan Inform., vol. 16, no. 2, pp. 59–67, 2022, doi: 10.30864/jsi.v16i2.312.
I. Karima and A. Rahman, “Implementasi Metode Fuzzy Mamdani dalam Pengambilan Keputusan Rekomendasi Jumlah Produksi,” J. Inov. Komput., vol. 1, no. 1, pp. 24–34, 2024.
D. Kurniadi, F. Nuraeni, and D. Jaelani, “Implementasi Logika Fuzzy Mamdani Pada Sistem Prediksi Calon Penerima Program Keluarga Harapan,” J. Algoritm., vol. 19, no. 1, pp. 151–162, 2022, doi: 10.33364/algoritma/v.19-1.1016.
S. Hartanto, “Implementasi Fuzzy Rule Based System untuk Klasifikasi Buah Mangga,” Techsi, vol. 9, no. 2, pp. 103–122, 2020, [Online]. Available: https://doi.org/10.29103/techsi.v9i2.217
A. Burhanuddin, “Analisis Komparatif Inferensi Fuzzy Tsukamoto, Mamdani dan Sugeno Terhadap Produktivitas Padi di Indonesia,” LEDGER J. Inform. Inf. Technol., vol. 2, no. 1, pp. 48–57, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tiara Dwi Lestari Purba, Aklima Laduna Ramadya, Ega Wahyu Andani, Baginda Faustine Sinaga, Victor Asido Elyakim P

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 The authors. Published by Yayasan Literasi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The author(s) whose article is published in the JOMLAI journal attain the copyright for their article and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. By submitting the manuscript to JOMLAI, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:their article is original, written by the mentioned author(s),
- has never been published before,
- does not contain statements that violate the law, and
- does not violate the rights of others, is subject to copyright held exclusively by the author(s), and is free from the rights of third parties, and that the necessary written permission to quote from other sources has been obtained by the author(s).
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
- Copyright and other proprietary rights related to the article, such as patents,
- The right to use the substance of the article in its own future works, including lectures and books,
- The right to reproduce the article for its own purposes,
- The right to archive all versions of the article in any repository, and
- The right to enter into separate additional contractual arrangements for the non-exclusive distribution of published versions of the article (for example, posting them to institutional repositories or publishing them in a book), acknowledging its initial publication in this journal (JOMLAI: Journal of Machine Learning and Artificial Intelligence).
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. JOMLAI will not be held responsible for anything that may arise because of the writer's internal dispute. JOMLAI will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets, and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. JOMLAI allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and JOMLAI to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published



















