Analysis of Unemployment Rate in Indonesia Using Fuzzy Inference System

Penulis

  • Tiara Dwi Lestari Purba STIKOM Tunas Bangsa
  • Aklima Laduna Ramadya STIKOM Tunas Bangsa
  • Ega Wahyu Andani STIKOM Tunas Bangsa
  • Baginda Faustine Sinaga STIKOM Tunas Bangsa
  • Victor Asido Elyakim P STIKOM Tunas Bangsa

DOI:

https://doi.org/10.55123/jomlai.v4i1.5956

Kata Kunci:

Fuzzy Logic , Unemployment , BPS, Inference System, Classification

Abstrak

Unemployment is a complex problem that demands an analytical approach capable of handling data uncertainty. This study utilizes a fuzzy inference system to analyze unemployment rates in Indonesia, based on Central Statistics Agency (BPS) data for the 2023-2025 period. The fuzzy logic method was chosen due to its ability to handle linguistic variables and uncertainty in classifying unemployment levels. Input variables include education level, age group, and geographical area, while the output is a classification of unemployment risk (low, medium, high). The fuzzy inference process involves fuzzification, rule base formation, fuzzy logic inference, and defuzzification. BPS data indicates that the Open Unemployment Rate (TPT) experienced a consistent downward trend from 5.45% in February 2023 to 4.76% in February 2025. Nevertheless, the complexity of unemployment requires a flexible approach that can capture nuances of uncertainty, which conventional methods are unable to address. The research results show that the fuzzy inference system is capable of classifying unemployment levels with an accuracy of 87.3%. The highest unemployment rate is found in the 15-24 age group and among high school/vocational school graduates. This system can serve as a decision-making tool for the government in formulating more targeted employment policies.

Referensi

C. F. R. Olii and Y. S. Dewi, “Tingkat Pengangguran Terbuka di Indonesia : Tantangan dan Solusi dalam Tingkat Pengangguran Terbuka di Indonesia : Tantangan dan Solusi dalam Konteks Perekonomian Pasca-Pandemi,” no. August 2023, 2024, doi: 10.13140/RG.2.2.11138.08644.

H. Sofyan, N. Fazmi, L. R. Siregar, M. Marzuki, M. Iqbal, and N. Nazaruddin, “Analisis dan Rancangan Sistem Fuzzy dalam Pengklasifikasian Tingkat Kemiskinan di Provinsi Aceh,” Stat. J. Theor. Stat. Its Appl., vol. 21, no. 1, pp. 45–50, 2021, doi: 10.29313/jstat.v21i1.7908.

A. N. Buulolo, A. N. Setyana, N. Khotimah, R. N. N. Azizah, J. W. Kusuma, and M. Huda, “Pengangguran dan Ketidakpastian Ekonomi: Analisis Statistik dari Studi Literatur Sistematis,” Disk. Panel Nas. Pendidik. Mat., vol. 10, pp. 545–554, 2024.

A. E. Wardoyo and N. Tripuspita, “Penentuan Cluster Optimum pada Tingkat Pengangguran dan Tingkat Kemiskinan di Jawa Timur Menggunakan Algoritma Fuzzy C-Means,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 1, no. 2, pp. 40–47, 2021, doi: 10.37148/bios.v1i2.10.

D. L. Rahakbauw, M. I. Tanassy, and B. P. Tomasouw, “Sistem Prediksi Tingkat Pengangguran Di Provinsi Maluku Menggunakan Anfis (Adaptive Neuro Fuzzy Inference System),” Barekeng J. Ilmu Mat. Dan Terap., vol. 12, no. 2, pp. 099–106, 2018, doi: 10.30598/vol12iss2pp099-106ar621.

K. Yudhistiro and H. Pamuntjar, “Sistem Inferensi Fuzzy Mamdani Untuk Penunjang Keputusan Penentuan Potensi Desa Di Kabupaten Malang,” Smatika J., vol. 9, no. 01, pp. 28–38, 2019, doi: 10.32664/smatika.v9i01.244.

A. N. Paradhita, “Prediksi Inflasi di Indonesia Menggunakan Algoritma Fuzzy dengan Bahasa Pemrograman Phyton,” J. Penelit. Inov., vol. 4, no. 2, pp. 457–464, 2024, doi: 10.54082/jupin.339.

C. P. P. Maibang and A. M. Husein, “Prediksi Jumlah Produksi Palm Oil Menggunakan Fuzzy Inference System Mamdani,” J. Teknol. dan Ilmu Komput. Prima, vol. 2, no. 2, p. 19, 2019, doi: 10.34012/jutikomp.v2i2.528.

Badan Pusat Statistik, “Booklet Survei Angkatan Kerja Nasional Agustus 2023,” Badan Pusat Statistik Indonesia. [Online]. Available: https://www.bps.go.id/en/publication/2023/12/22/ffb3e2d42b94d727d97e78d8/booklet-survei-angkatan-kerja-nasional-agustus-2023.html

Badan Pusat Statistik, “Keadaan Angkatan Kerja di Indonesia Agustus 2024,” Badan Pusat Statistik Indonesia. [Online]. Available: https://www.bps.go.id/en/publication/2024/12/09/6f1fd1036968c8a28e4cfe26/keadaan-angkatan-kerja-di-indonesia-agustus-2024.html

Badan Pusat Statistik, “Tingkat Pengangguran Terbuka Berdasarkan Jenis Kelamin,” Badan Pusat Statistik Indonesia. [Online]. Available: https://www.bps.go.id/en/statistics-table/2/MTE3NyMy/tingkat-pengangguran-terbuka-berdasarkan-jenis-kelamin.html

L. Sudarmana, “B . KONSEP LOGIKA FUZZY Himpunan Tegas dan Himpunan Kabur Fungsi Keanggotaan,” Teknomatika, vol. 3, 2021.

A. Alamsyah and I. H. Muna, “Metode Fuzzy Inference System untuk Penilaian Kinerja Pegawai Perpustakaan dan Pustakawan,” Sci. J. Informatics, vol. 3, no. 1, pp. 88–98, 2020, doi: 10.15294/sji.v3i1.6136.

W. A. Marlisa Lisa, Ermawati, “Aplikasi Fuzzy Inference System ( Fis ) Metode Sugeno Dalam Sistem Pendukung Keputusan ( Spk ) Untuk Menentukan Jumlah Produksi Barang Berdasarkan Data Persediaan Dan Jumlah,” Msa, vol. 5, no. 2, pp. 1–13, 2020, [Online]. Available: http://journal.uin-alauddin.ac.id/index.php/msa/article/view/4504

U. R. F. Tolang and S. Sugiyarto, “Implementasi fuzzy inference system untuk pengambilan keputusan,” J. Ilm. Mat., vol. 7, no. 1, p. 43, 2020, doi: 10.26555/konvergensi.v7i1.19541.

Gusti Ngurah Mega Nata and Putu Pande Yudiastra, “Fuzzy Inference System dan Fuzzy Database sebagai Kecerdasan Basis Data untuk Kontrol Stok,” J. Sist. dan Inform., vol. 16, no. 2, pp. 59–67, 2022, doi: 10.30864/jsi.v16i2.312.

I. Karima and A. Rahman, “Implementasi Metode Fuzzy Mamdani dalam Pengambilan Keputusan Rekomendasi Jumlah Produksi,” J. Inov. Komput., vol. 1, no. 1, pp. 24–34, 2024.

D. Kurniadi, F. Nuraeni, and D. Jaelani, “Implementasi Logika Fuzzy Mamdani Pada Sistem Prediksi Calon Penerima Program Keluarga Harapan,” J. Algoritm., vol. 19, no. 1, pp. 151–162, 2022, doi: 10.33364/algoritma/v.19-1.1016.

S. Hartanto, “Implementasi Fuzzy Rule Based System untuk Klasifikasi Buah Mangga,” Techsi, vol. 9, no. 2, pp. 103–122, 2020, [Online]. Available: https://doi.org/10.29103/techsi.v9i2.217

A. Burhanuddin, “Analisis Komparatif Inferensi Fuzzy Tsukamoto, Mamdani dan Sugeno Terhadap Produktivitas Padi di Indonesia,” LEDGER J. Inform. Inf. Technol., vol. 2, no. 1, pp. 48–57, 2023.

Diterbitkan

2025-03-20

Cara Mengutip

Tiara Dwi Lestari Purba, Aklima Laduna Ramadya, Ega Wahyu Andani, Baginda Faustine Sinaga, & Victor Asido Elyakim P. (2025). Analysis of Unemployment Rate in Indonesia Using Fuzzy Inference System . JOMLAI: Journal of Machine Learning and Artificial Intelligence, 4(1), 53–60. https://doi.org/10.55123/jomlai.v4i1.5956

Terbitan

Bagian

Articles